7.4. Estimation of stable age distribution

Equation [5] can be re-written as:

Substituting this equation into [3] we get the relationship between the number of organisms in age x and in age 0 in a stable age distribution:

Now we can estimate the proportion of organisms, c , in age x:

[7]

Age,
x
lx exp(-rx) lxexp(-rx) cx Simulated cx
0 1.000 1.0000 1.0000 0.2413 0.2413
1 0.845 0.8507 0.7188 0.1734 0.1734
2 0.824 0.7237 0.5963 0.1439 0.1439
3 0.795 0.6156 0.4894 0.1181 0.1181
4 0.755 0.5237 0.3954 0.0954 0.0954
5 0.699 0.4455 0.3114 0.0751 0.0751
6 0.626 0.3790 0.2373 0.0572 0.0572
7 0.532 0.3224 0.1715 0.0414 0.0414
8 0.418 0.2743 0.1147 0.0277 0.0277
9 0.289 0.2333 0.0674 0.0163 0.0163
10 0.162 0.1985 0.0322 0.0078 0.0078
11 0.060 0.1689 0.0101 0.0024 0.0024
Total 4.1445 1.0000 1.0000

Age distribution estimated using equation [7] (column 5) coincided with simulated age distribution after 50 iterations of the model.


Alexei Sharov 12/4/98