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Leaf area index (LAl) is a key biophysical parameter for the monitoring of agroecosystems. Conventional
two-band vegetation indices based on red and near-infrared relationships such as the normalized differ-
ence vegetation index (NDVI) are well known to suffer from saturation at moderate-to-high LAI values
(3-5). To bypass this saturation effect, in this work a robust alternative has been proposed for the esti-
mation of green LAI over a wide variety of crop types. By using data from European Space Agency (ESA)

— campaigns SPARC 2003 and 2004 (Barrax, Spain) experimental LAl values over 9 different crop types have
i(;_}fm:ds. been collected while at the same time spaceborne imagery have been acquired using the hyperspectral
NDI CHRIS (Compact High Resolution Imaging Spectrometer) sensor onboard PROBA (Project for On-Board
Autonomy) satellite. This extensive dataset allowed us to evaluate the optimal band combination through
spectral indices based on normalized differences. The best linear correlation against the experimental LAI
dataset was obtained by combining the 674 nm and 712 nm wavebands. These wavelengths correspond
to the maximal chlorophyll absorption and the red-edge position region, respectively, and are known to
be sensitive to the physiological status of the plant. Contrary to the NDVI (*: 0.68), the red-edge NDI
correlated strongly (r?: 0.82) with LAl without saturating at larger values. The index has been subse-
quently validated against field data from the 2009 SEN3EXP campaign (Barrax, Spain) that again spanned
a wide variety of crop types. A linear relationship over the full LAl range was confirmed and the regres-
sion equation was applied to a CHRIS/PROBA image acquired during the same campaign. A LAl map has
been derived with an RMSE accuracy of 0.6. It is concluded that the red-edge spectral index is a powerful
alternative for LAl estimation and may provide valuable information for precision agriculture, e.g. when
applied to high spatial resolution imagery.

Red-edge

Crops growth monitoring
Remote sensing
Sentinel-2

© 2012 Elsevier B.V. All rights reserved.

1. Introduction nitrogen dressings) on the field (Houles et al., 2007; Nguyen and

Lee, 2006). Because LAl is functionally linked to the canopy spec-

Leaf area index (LAl) is a key variable used by crop physiologists
and modellers for estimating foliage cover, as well as monitor-
ing and forecasting crop growth, biomass production and yield
(Dorigo et al., 2007; Casa et al.,, 2012). Green LAl is defined as
one-sided area of green leaves per unit ground area and is thus
directly related to the growth status of the crop (Scurlock et al,,
2001). The spatially explicit quantification of LAI over large areas
has become an important aspect in agroecological and climatic
studies (Dorigo et al., 2007). At the same time, remotely sensed
observations are increasingly being applied at a within-field scale
for dedicated agronomical monitoring applications (Gianquinto
et al,, 2011; Sakamoto et al., 2012). For instance, knowledge of
the spatial distribution of LAl and chlorophyll content can assist
the farmer towards a more precise distribution of fertilizers (e.g.

* Corresponding author. Tel.: +34 963544068; fax: +34 963543261.
E-mail address: Jesus.Delegido@uv.es (J. Delegido).
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tral reflectance, its retrieval from optical remote sensing data has
prompted many studies using various techniques (Aparicio et al.,
2000; Baret and Guyot, 1991; Haboudane et al., 2004). Essentially,
these retrieval techniques can be classified into two groups (Le
Maire et al., 2008; Zheng and Moskal, 2009): (i) empirical retrieval
methods, which typically consist of relating the biophysical param-
eter of interest against spectral data through linear (e.g. vegetation
indices) or nonlinear (e.g. machine learning approaches) algorith-
mic techniques (Broge and Mortensen, 2002; Glenn et al., 2008;
Myneni et al., 1995; Verrelst et al., 2012) and (ii) physically-based
retrieval methods, which refers to inversion of radiative transfer
models (RTMs) against remote sensing observations (e.g. Gobron
et al., 2000; Goel, 1987; Houborg and Boegh, 2008; Jacquemoud
et al, 1995). Both approaches have their strengths and weak-
nesses, which led to the development of many hybrid forms. For
instance, machine learning methods (e.g. neural networks) are typ-
ically trained by synthetic spectra from RTMs (Hastie et al., 2009;
Verger et al., 2008).
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The advantage of vegetation indices is that they allow obtain-
ing relevant information in a fast and easy way and the underlying
mechanisms are well-understood. Most widely known is the Nor-
malized Difference Vegetation Index (NDVI) (Rouse et al., 1973).
This successful index from the early days of remote sensing
expresses the normalized ratio between the reflected energy in
the red chlorophyll absorption region and the reflected energy in
the NIR due to scattering of light in the intercellular volume of the
leaves mesophyll, and provides an indicator of the ‘greenness’ of the
vegetation, which is in a way related to green LAl and chlorophyll
content (Baret and Guyot, 1991; Myneni et al., 1995). Neverthe-
less, the relationship between NDVI and LAI is exponential, for
instance NDVI approaches saturation asymptotically under condi-
tions of moderate-to-high LAl values (e.g. >3-5)(Dorigoetal., 2007;
Haboudane et al., 2004).

At the same time, during the last two decades there has been
rapid technological progress in the development of imaging spec-
troscopy or hyperspectral sensors that capture ‘images’ of reflected
solar radiation in a large number of narrow bands (typically
between 50 and 250 bands) across the visible and near-infrared
region (Nguyen and Lee, 2006; Schaepman et al., 2009). Vari-
ous imaging spectrometers have been mounted onboard aircrafts
for the purpose of precision farming applications (e.g. Delegido
et al, 2011a; Lee et al.,, 2004; Meggio et al., 2010; Oppelt and
Mauser, 2004). By analysing such imaging spectrometer data, sev-
eral experiments have demonstrated that an important spectral
region related to LAl is to be found in the red-edge region (Lee
et al., 2004; Liu et al., 2004; Wu et al,, 2010). This is the region
where a sharp change in reflectance between wavelengths 690 and
750 nm takes place, and characterizes the transition from chloro-
phyll absorption to leaf scattering (Clevers et al., 2002). It has been
demonstrated that the shape of the red-edge region is strongly
influenced by LAI (Delegido et al., 2008; Herrmann et al., 2011;
Lee et al., 2004) principally by the slope of the reflectance curve in
this region (Filella and Pefiuelas, 1994), while an increase in leaf
chlorophyll content causes a shift in the red-edge position towards
longer wavelengths (Dash and Curran, 2004; Filella and Penuelas,
1994; Herrmann et al., 2011; Moran et al., 2004).

The promise and potential of hyperspectral narrowband sen-
sors for a wide array of Earth resource applications has motivated
the design and also the launch of spaceborne imaging spectro-
meters. Until now only experimental imaging spectrometers (e.g.
HYPERION, HICO, CHRIS) that detect vegetation biophysical prop-
erties at high spatial resolution from space exist, but these kinds
of space missions are being planned in near future for routinely
monitoring land surfaces (e.g. the German's Enmap mission, NASA's
HyspIRI mission). Nevertheless, superspectral resolution sensors
(more than 10 and less than 50 bands, i.e. in-between multi-
spectral and hyperspectral resolution) onboard of new generation
Earth observation spacecrafts have already incorporated red-edge
narrowbands. For instance, the forthcoming Sentinel-2 satellite
operated by the European Space Agency (ESA), among others for
agroecosystems monitoring applications (Malenovsky et al., 2012),
has been configured with new narrowbands, centred at 705 nm and
740 nm. The first Sentinel-2, is envisaged to be launched in 2013
and aims to deliver data taken over all land surfaces at a spatial
resolution of 10 m, 20 or 60 m (depending on the used bands) at
a high revisiting time (each 5th day under cloud-free conditions)
(ESA, 2010). Despite the good performances of narrowband red-
edge indices in local field experiments, its robustness in a more
generic setting, is still an open issue. It remains to be investigated
whether new red-edge narrowbands can deliver more robust esti-
mations than conventional indices such as NDVIwhen applied over
image-wide heterogeneous agroecosystems.

Meanwhile, experimental missions such as ESA’s Compact High
Resolution Imaging Spectrometer (CHRIS) onboard PROBA (Project

for On-Board Autonomy) satellite (Barnsley et al., 2004) can serve
as benchmark for the evaluation of new and existing hyperspectral
spectral indices on their use for space-based vegetation moni-
toring application. CHRIS/PROBA was designed as a technology
demonstrator and initially intended as a one year mission since
its launch in 2001. But both the satellite and the CHRIS sensor con-
tinue to function well until now, making this sensor very successful
(Verrelst et al,, 2010). A constraint for operational use, however,
is that CHRIS does not deliver operational data streams but only
captures images over requested sites. Nevertheless, by using such
images acquired over agricultural areas, it is possible to infer the
most relevant bands combination that are related to the parame-
ter of interest (Darvishzadeh et al., 2008; Thenkabail et al., 2000;
Verrelst et al., 2012). While these kinds of exercises have already
been conducted in a theoretical setting using RTMs (Le Maire et al.,
2008), or using ground or airborne hyperspectral data for a spe-
cific vegetation type such as pasture (Fava et al., 2009; Mutanga
and Skidmore, 2004) or a specific crop type (Casa et al., 2012;
Thenkabail et al., 2000), the evaluation of optimized indices has not
yet been tested over a multitude of crop types and growth condi-
tions using spaceborne data, which is essential when aiming to use
an empirically-optimized index over large datasets of space images.
This brings us to the following objectives: (i) to infer the most pow-
erful two-band spectral index from CHRIS data in estimating LAI
over a wide range of agricultural crops and growth conditions, (ii)
to evaluate this spectral index on its robustness for LAl estimating
when applied to an independent dataset, and (iii) to compare this
index against other established vegetation indices sensitive to LAI

2. Methods

A variety of spectral vegetation indices have been developed
with the objective of passive estimating biophysical parameters
based on remotely sensed spectral radiances (Bannari et al., 2007;
Heetal., 2006). One of the oldest and most widely used indices isthe
NDVI, formed from the normalized reflectance values either side
of the red-edge, which discriminate between live green and other
canopy material. Because of having its origin in broadband sen-
sors, which forms still the majority of the Earth observing satellites,
and because of its simplicity, NDVI is one of the most extensively
applied vegetation indices related to LAl (Glenn et al., 2008; Turner
et al., 1999). Empirical approaches are predominant in deliver-
ing accurate estimations at local to landscape scale (Cohen et al.,
2003; Weissteiner and Kiithbauch, 2005). Studies on various veg-
etation types, e.g. agroecosystems, grass and shrublands, conifer
and broadleaf forests (Chen and Cihlar, 1996; Fassnachtet al., 1994;
Friedl et al., 1994; Law and Waring, 1994) have led to the general
conclusion that the NDVI has considerable sensitivities to LAl, but
merely at relatively low LAl values (Turner et al., 1999). Although
the level of saturation is variable and species-dependent (Chen
etal., 2002; Hoffmann and Blomberg, 2004), it is generally reached
at mid-LAl values around 3-5 (Thenkabail et al., 2000; Turner et al.,
1999). This means that NDVI may be a good predictor for only low-
to-medium LAIs (Gonzilez-Sanpedro et al., 2008; Hoffmann and
Blomberg, 2004; Yao et al., 2008).

With the advent of hyperspectral imagery, various alternatives
to the conventional NDVI have been proposed. For instance, a wide
range of narrowband vegetation indices have been developed to
bypass saturation effects or minimizing effects of confounding fac-
tors such as soil background. Table 1 shows some of the most
widely indices used. Most of these indices were initially devel-
oped for the study of chlorophyll, except SR and OSAVI, which
were proposed to study LAL TVI was proposed for both chlorophyll
and LAI. NDVI and others have subsequently been used to study
both parameters (Haboudane et al., 2008). In an attempt to further
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Table 1

Vegetation indices used in this study, where R; is reflectance at wavelength A (nm).
Index Formula Reference
NDVI (Rsoo — Re70)/(Rsoo + Rs70) Rouse et al. (1973)
MCARI [(R700 — Re70) — 0.2(R700 — Rss0)] R700/Rs70 Daughtry et al. (2000)
TCARI 3[(R700 — Rs70) — 0.2(R700 — Rs50)R700/Rs70] Haboudane et al. (2002)
MTCI [(R7s0 — R710)/(R710 — Reso)] Dash and Curran (2004)
TCL 1.2(R700 — Rsso0) — 1.5(Rs70 — Rsso )(R7on/Re70)' 2 Haboudane et al. (2008)
R-M R750/R720 — 1 Gitelson et al. (2005)
TVI 0.5[120(R750 — Rsso) — 200(Rs70 — Rss0)] Broge and Leblanc (2000)
OSAVI (Rsoo — Re70)/(Rso0 + Rs70 +0.16) Rondeaux et al. (1996)
PRI (Rsso— Rs31)[(Rsso + Rs31) Gamon et al. (1992)
SR Rsoo/Re70 Jordan (1969)
SR705 R350/R705 Gitelson and Merzlyak (1994)

optimize the sensitivity of these indices, some authors started using
these indices together as a new index such as MCARI/OSAVI or
TCARI/OSAVI (Daughtry et al., 2000; Haboudane et al., 2008; Meggio
et al,, 2010).A drawback of these established indices, however, is
that the most sensitive bands are not necessarily the ones used
to construct the index. An alternative approach therefore is calcu-
lating all possible two-band narrowband combinations according
to the NDVI formulation, being the Normalized Difference Index
(NDlgp):

Ry — Rq
Rp+ Ra

NDI,_, = (1
where R, are the reflectance values in the a and b bands in the
visible and near-infrared spectral range. Using this approach, it
was demonstrated that the best information is contained in only
a few selected bands or indices with the rest becoming redundant
(Fava et al., 2009; Ray et al.,, 2006; Thenkabail et al., 2000). Specifi-
cally, some authors have demonstrated that the band combination
around 670 and 800 nm, as used by NDVI, not always provides best
information about LAI, while other regions appeared to be more
successful (Thenkabail et al., 2000; Zhao et al., 2007). Zhao et al.
(2007) found that the bands with best linear correlation between
LAI and cotton field data were 700-710 and 750-900. Similarly,
using CHRIS data over a shrubland, Stagakis et al. (2010) found
that a strong linear correlation between NDI,_; and LAl when b
is between 580 and 720nm, and a between 710 and 1003 nm.
Overall, while showing superiority over NDVI, these studies also
showed that the accuracy of different optimized indices depends
on several factors related to the biological characteristics of the
plant material, and no single index could be considered superior in
general. In this work the NDI,_; formulation was used to evaluate
all two-band combinations in the range of 600-1000 nm that lead
to optimized linear correlation with LAl using spaceborne hyper-
spectral data. Evaluation was done by calculating the coefficient of
determination (r2). It should thereby being taken into account that
instead of aiming at high accuracies for a specific crop type, efforts
were undertaken to seek for an optimized index applicable over
a large variety of crops agroecosystem. Finally, the best-evaluated
regression equation was validated by an independent dataset and
compared against the performance of the established indices of
Table 1.

3. Experimental dataset
3.1. SPARC

The experimental data used for the development of an opti-
mized LAl-sensitive index was obtained from the SPARC (Spectra
Barrax Campaigns) campaigns which were organized by ESA dur-
ing the summers of 2003 and 2004. The campaigns were conducted
at Barrax, La Mancha region in Spain (coordinates 30°3'N, 2°6'W,;

700 m altitude). The test area has a rectangular form and an extent
of 5km x 10km, and is characterized by a flat morphology and
large, uniform land-use units. The region consists of approximately
65%dryland and 35%irrigated agricultural parcels. The climate con-
ditions are typically Mediterranean with a hot and dry summer. The
annual rainfall average is about 400 mm. The 2003 campaign was
conducted between 12and 14 July, and the 2004 campaign between
15 and 16 July.

Biophysical parameters were measured on various agricultural
parcelsin total spanning 9 different crop types (garlic, alfalfa, onion,
sunflower, corn, potato, sugar beet, vineyard and wheat) and a
large set of ground sampling points were identified (240 elemen-
tary sample units (ESU) plots from crops and additional 60 samples
from bare soils). ESU refers to a plot size of about 20m x 20 m.
In each ESU, among other parameters, LAl was measured with a
digital analyzer (Licor LAI-2000), which works by comparing the
intensity of diffuse incident illumination measured at the bottom
of the canopy with that arriving at the top (LI-COR technical report)
(Welles and Norman, 1991). Each LAl value used in the present
study was obtained as a statistical mean of 24 measures (8 data
readings x 3 replications) with variable standard errors between 5
and 10% (Fernandez et al., 2005). Fig. 1 shows an image of the study
area with the 2004 campaign crops. The 2003 campaign was on the
same area, though there were also some changes in crop cultiva-
tion and measured crop types (Delegido et al., 2008; Moreno et al.,
2004).

In parallel with the field measurements, four CHRIS/PROBA
images were acquired during the days 12 to 14 July 2003 and
15 and 16 July 2004. CHRIS on board PROBA satellite provides
high spatial resolution hyperspectral/multiangular data, acquiring
5 consecutive images from 5 different views (fly-by zenith angles
0°, +36°, +55°) over a dedicated site in one single satellite over-
pass. CHRIS measures over the visible/near-infrared spectra from
400 nm to 1050 nm. It can operate in different modes, thereby com-
promising between the number of spectral bands and the spatial
resolution to keep balanced the signal level and data volume. In
particular, CHRIS Mode 1 provides 62 bands (bandwidth ranges
between 6nm and 12nm) and has a spatial resolution of 34m
at nadir (Barnsley et al.,, 2004). In the 2003 and 2004 campaigns,
the sensor was configured at highest spectral resolution Mode 1,
which is most favourable for vegetation studies. The images were
first geometrically corrected (Alonso and Moreno, 2005) and then
atmospherically corrected according to the method proposed by
Guanter et al. (2005). This method simultaneously derives a set
of calibration coefficients and an estimation of water vapour con-
tent and aerosol optical thickness from the data themselves. The
atmospheric correction of the data was validated by direct com-
parison of CHRIS-derived reflectance retrievals with simultaneous
ground-based measurements acquired during the campaigns, as
is described in Guanter et al. (2005). From all the angular images
acquired during the campaigns, only the ones corresponding to
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I GramineousGrasslands
I Sugar Beet
+ LI-COR LAI2000

Fig. 1. Land use map, in southeast of Iberian Peninsula, for selected crops during the SPARC 2004 campaign. The points marked with (+) indicate points where LAI was

measured. The grid reflects the UTM-projection coordinates (Delegido et al., 2008).

nadir view were selected so that angular and atmospheric effects
are minimized, and that highest spatial resolution is preserved.

3.2. SEN3EXP

In view of validating the best performing NDI,_p,an independent
dataset was used coming from the SEN3EXP (Sentinel-3 Experi-
ment) campaign. The SEN3EXP campaign was conducted in 2009
and formed part of the European GMES (Global Monitoring for
Environment and Security) Sentinel-3 programme (ESA, 2012).
The SEN3EXP campaign was set up in a similar way as SPARC;
it included collection of field measurements, along with simulta-
neously acquired hyperspectral observations from various airborne
and spaceborne sensors. Several sites across Europe where selected
including Barrax as representing a Mediterranean agroecosystem
with different water regimes (rainfed and irrigated). The Barrax
campaign was carried out during 20-24 June 2009. Similar as in
SPARC, elementary sample units (ESUs) were defined wherein LAI
and other biophysical parameters were collected.

In this campaign, LAl was measured in 34 ESUs distributed
over 14 different agricultural fields (Delegido et al., 2011b) by
the methodology of hemispheric photographs, which allows cal-
culating the gap fraction over the angular range of 180° and
can be related to LAl (Weiss et al, 2004). LAl measurements
were conducted over 9 different crop types, being sunflowers,
sugar beet, almond trees, alfalfa, garlic, corn, vineyard, onion

and potato, with LAI varying between 0 and 3 for the major-
ity of the crops, and with an LAI around 7 for potatoes. The
ESUs are marked by the labels on the agricultural parcels in
Fig. 2.

Along with the field measurements, several spaceborne CHRIS
Mode 1 images were acquired the 19 and 29 June 2009. In
this work we used the 19 June CHRIS image, which is most
close to the period of field measurements. The images were geo-
metrically and atmospherically preprocessed according to the
same methodology as described in the above-mentioned SPARC
campaign.

4. Results
4.1. NDVI

The SPARC field dataset, along with the ensemble of CHRIS
images, was used to develop a simple spectral method applica-
ble for remote sensing estimation of LAI over a complete set of
different agroecosystems. As a reference, NDVI values were first
calculated from the CHRIS reflectance spectra and were subse-
quently plotted against the corresponding measured LAl values
(Fig. 3). Although a linear regression through the scatter plot led
to an 12 of 0.687, note from this figure that NDVI starts saturating
already around a LAI of 3. Alternatively, a power function, plotted
in Fig. 3, led to a similar r2 of 0.681 and thus it did not improve the



46 J- Delegido et al. / Europ. |. Agronomy 46 (2013) 42-52

TeUW

TIUW

TaUW TIUW

[Clarralfa (ALY

[ Bare Sod (BS)
[Esarley (8)
[CJ&road Bean (68)
[CJ experimental plot
Ccon(Q)
[CIFatow (FA)

W Fruit (FR)

[ Gatlic (G)

[CJ Garlic Greenhouse (GG)
[ Grass (65)
[CHarvested (H)
Coat(om)

[l Orion (0)

W Papaver (PP)

W rea(p)
[Crotatoes (PT)
BlRape (R)

W Reforestation (RF)
CIRye RY)

[CIRye Grass (RG)
[Z350lar panels
[CJsunflower (SF)
W vetch (v)

[l vine (¥N)

Water body

[ wheat (W)

Fig. 2. Land use map of the study area during SEN3EXP campaign. The area in which measurements were made is marked in red (Delegido et al., 2011b). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

relationship. Given that crops can easily reach LAIs of above 4 (e.g.
potatoes, corn, sugar beet), this saturation is a major obstacle to
the use of NDVI-related relationships for crop monitoring applica-
tions.

Measured LAI

Alfalfa
Com
Garlic
Onion
Potato
Sugarbeet
Sunflower
Vine
Wheat
Bare Soil
Regression

A desrb e

NDVI

Fig. 3. Measured LAl plotted against NDVI derived from CHRIS spectra (SPARC
dataset).

4.2. Generic NDI,_p,

To optimize the retrieval of LAl by means of spectral indices, all
possible two-band combinations have been calculated from CHRIS
spectra in the form of generic NDI,_, (according to Eq. (1)) with
a and b in the region from 600 to 1000 nm. Each of these indices
was subsequently correlated with green LAl using linear regression
and statistics such as the coefficient of determination (12) and the
p-value were calculated. One of the resulting correlation matrices,
shown in Fig. 4a, enables us to inspect variation in the 2 coeffi-
cient over all the two-band combinations. The figure is marked by
an optimized region shown in green with strong correlations and a
maximum r2 of 0.717 was obtained by the two-band combination
of a=674 and b=712nm bands. In CHRIS, the 674 nm waveband
has a bandwidth of 10 nm while the 712 nm band has bandwidth
of 6 nm. With these two spectral bands positioned in the red and
in the lower part of the red-edge, highest sensitivity towards vari-
ation in green LAl is obtained. Both bands show sensitivity to LAI
and chlorophyll variations, and can be considered as the coupling
of a chemical absorption (chlorophyll) to a structural variable (LAI).
Specifically, 674 nm is located in a relative chlorophyll absorption
maximum and 712 nm is located in the red-edge region, where the
variability is driven by the transition from a maximum to a min-
imum of chlorophyll absorption and the slope on the red-edge is
directly related to structural effects, in particular LAI (Filella and
Pefiuelas, 1994). This increases the sensitivity of the index to green
LAI and explains the obtained optimized result. In comparison, the
conventional NDVI region with a= 674 nm and b=803 nm can also
be viewed in the same figure. Though it can be noted that this point
did notlead to most optimal correlations in the matrix; it performed
about 4% poorer compared to the optimized NDI_y,.
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Fig. 4. (a) Linear determination coefficient r? between measured LAl and NDI,_;, for different combinations of bands a and b (nm). (b) Coefficient r* between measured LAl
and calculated by NDI,_j, for different combinations of bands a and b (nm) without considering the outliers as identified in Fig. 5. Both figures were colour scaled between r?

of 0.6 and 0.85.

It is also noteworthy that another region of combinations led
to optimized results higher up at 674 and 927 nm (in green). In
all of these combinations yielded the 674 nm band best perform-
ances. With respect to b in the NDI,_; formulation, over the whole
matrix the best correlations were obtained precisely within the
red-edge region, at 712 nm. Hence, given all possible two-band
combinations, an NDI,_, of a=674, which is also used by NDVI,
and b =712 nm, which falls right in the red-edge, was found to esti-
mate most accurately green LAL This optimized NDVI is hereafter
referred to as “red-edge NDI” and denoted as NDIg74_712-

Given the above-identified best performing red-edge NDI, Fig. 5

shows the resulting relationship between its values and the mea-
sured LAI values in a scatterplot. A linear relationship can be fitted
through the data points according to the following regression equa-
tion:
LAl = 6.769NDlg74_712 1° =0.717 (2)
Although a satisfactory relationship was obtained, some sampling
points fell away fromthe linear trend (marked withacircleinFig.5).
Those 12 points have been identified as belonging to senescent
wheat plants, i.e. with dry and yellowish leaves, and thus do not
represent green vegetation. Reflectance spectra of senescent vege-
tationresemble closely to dry soil spectraand cannot be detected by
an NDI,_, index that is only sensitive to variations in green leaves.
Therefore, those data points have been reasonably removed from
the fit, resulting in an improved correlation:

LAl = 6.753ND1574_7]2 Tz =0.824 (3)
Given the variety of crop types included, this relationship seems
to be sufficiently robust for assessing green LAI from space-
borne superspectral or hyperspectral imageries in a simple
way.

In order to assess the influence of these discarded data
points the r?2 matrix was recalculated without the outliers
(Fig. 4b). It can be noted that the correlations improved con-
siderably and the same optimal band combinations clearly
emerged.

Measured LAI
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Corn
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Onion
Potato
Sugarbeet
Sunflower
\.“4 ne
Wheat
Bare Soil
Regression

Dadde e s

. : : : a
0.2 0 0.2 04 0.6 0.8
NDI

674-712

Fig.5. Measured LAI plotted against NDI,_, derived from CHRIS spectra using wave-
bands at a: 674nm and b: 712 nm (SPARC dataset).
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Fig. 6. Measured LAl in SPARC campaigns according to the selected Table 1 indices.

4.3. Comparison with other indices

In comparison, also the performance of established indices
has been evaluated. Fig. 6 shows experimental LAl dataset of the
SPARC field campaign plotted against the values of the selected

indices. Along with these graphs Table 2 shows the corresponding
2 coefficients and p-values. Overall poorer correlations than the
proposed NDI were obtained but two indices showed a slightly bet-
ter linear relationship with LAl being TCARI and TVL. Remarkably,
both of these indices use three bands instead of two which may

Table 2
r? coefficients and p-values for the differents graphs of Fig. 6.
MCARI TCARI MTCI TCl R-M TVI 0OSAVI PRI SR SR705 MCARI SAVI TCARI SAVI
r? 0.614 0.748 0.037 0.705 0.403 0.751 0.688 0.082 0412 0.438 0.582 0482
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Fig. 7. Final LAl map over the study site as obtained from the 19 June 2009 CHRIS image (SEN3EXP dataset).

explain their good performance. TCARI, TCI and TVI were originally
developed for the estimation of chlorophyll content and they are
very similar to each other. TCI and TCARI use bands at 550, 670 and
700 nm, while TVI uses 550, 670 and 750 nm. Chlorophyll absorp-
tion is maximized at 670 nm whereas a large portion of the solar
radiation is reflected at 550 nm. These bands in combination with
bands around the red-edge (700, 750 nm) proved to be successful
for estimating LAI (see also Lee et al., 2004; Thenkabail et al., 2000;
Zhao et al., 2007). The remaining indices yielded poor correlation
with LAI, either because not using the 670 nm band or bands in
the red-edge region or because of combining indices that caused
reduced sensitivity, like MCARI/OSAVI, TCARI/OSAVI, originally
used to provide predictive relationships for chlorophyll estimation
in precision agriculture (Haboudane et al., 2008; Meggio et al,
2010).

4.4. Validation

Validation of retrieval methods using independent datasets isan
important step in evaluating its actual performance. The SEN3EXP
dataset was used for validation of the red-edge NDI on its capability
inestimating LAl Similar to the SPARCapproach, a CHRISimage was
first used. The red-edge NDI was calculated. LAI field measurements
were subsequently linked to the corresponding red-edge NDI val-
ues. The results can be linearly fitted by a regression line according
to the following equation:

LAl = —0.91876 + 13.448NDlg72 77105 12 = 0.905 (4)

where NDI,;_p, has been calculated using the 672.70 and 710.50 nm
bands, as over time CHRIS bands have suffered from a small spec-
tral displacement. The regression equation yielded a strong linear
correlation with field LAl measurements. Subsequently the final
step consists of applying this equation over the 29 June 2009 CHRIS
image, which leads to a LAl map over the Barrax agroecosystems
(Fig. 7).

Given the final map in Fig. 7, different agricultural parcels can
be distinguished based on spatial patterns of LAl estimations. The
dark-blue-to-blue colour tones represent low LAl distributions,
ranging from values close to zero to two and cover bare soils and
sparsely vegetated crop types (onion and some fields of garlic, sun-
flowers and corn which are in early growth stage) or row crop
types that at pixel-level exhibit a low plant cover such as vine-
yards. The light-blue-to-yellow colour tones represent LAl values
between 2 and 3 and cover the majority of major crop types such
alfalfa, garlic and some more developed corn and sunflowers. The
dark-red parcels represent potatoes fields with a high LAI around
7. Overall, the map shows that the proposed red-edge NDI per-
forms adequately for obtaining large areas LAl maps over an entire
agroecosystem from space-based imagery.

Furthermore, Fig. 7 shows that the methodology applied to high
spatial resolution imagery allows identification of within-field vari-
ations in LAI, which makes the approach potentially applicable to
precision farming.

The validity of the LAI map in Fig. 7 was assessed by calculating
the root mean square error (RMSE). To do so, we have plotted the
LAI field measurements against the estimates obtained from the
map (Fig. 8). It led to an RMSE deviation between measured and
estimated LAI of 0.55. Note hereby the extremely high measured
LAl vales over potatoe crops observed both in the derived map as
in the field.

5. Discussion

Since agro-technical decisions are routinely made by the farmer
once or twice a week, a simple, robust and up-to-date moni-
toring application would be most welcome. Specifically, frequent
availability of LAI maps will allow the farmer to better monitor
agroecosystems dynamics in time at the landscape level (Dorigo
et al, 2007). With the advent of high spatial resolution and
superspectral sensors, remote sensing techniques have become
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particularly attractive for assessing crop biophysical parameters
such as LAL For instance ESA's forthcoming superspectral Sentinel-
2 mission will soon become available to users. Sentinel-2 has a
spectral band-settings that is optimized for measuring in red-edge
region, and is dedicated to vegetation and agroecosystem mon-
itoring applications at a high spatial (up to 10m) and temporal
resolution. Under cloud-free conditions Sentinel-2 revisit the same
site about each 5th day (ESA, 2010), which would allow the farmer
to monitor crop growth on a weekly basis. This monitoring could be
done through image-wide LAl mapping by applying the here pro-
posed red-edge NDI (NDIg74_712). It is foreseen that the availability
of these kinds of LAl maps will open new agroecosystem monitor-
ing application in the coming years, ranging from field up to global
scale (Casa et al., 2012).

The simple regression equation is intended for rapid prediction
of LAl in a straightforward way. In fact, regression models based on
spectral vegetation indices may be preferable to physically-based
models that are complex to design and parameterize (Liang, 2007;
Richter et al., 2009). Statistical approaches are amongst the sim-
plest way to predict biophysical parameters, however it does not
escape our attention that they provide relationships that are sig-
nificantly space, time and species dependent (Casa et al., 2012;
Glenn et al.,, 2008; Verrelst et al., 2008). In this respect, it should
be stressed that the objective of this article was not the devel-
opment of a regression equation itself, but rather the delivering
of a more robust index that could bypass much of the difficulties
experienced with broandband indices. The here proposed red-edge
NDI proved to be successful in establishing a linear relationship
with green LAI without being prone to saturation at higher LAI
values. It should herewith be noted that the observed relation-
ships have been derived purely from experimental data, without
involving any modelling that makes assumptions about underlying
mechanisms in establishing biochemical/structural relationships.
Although regression coefficients can vary depending on the local
situation and sensor characteristics, validation of the red-edge NDI
proved that the intrinsic relationship between LAI and the index
was essentially stable. Henceforth, regression coefficients can be
easily recalibrated.

The regression equation was validated against an independent
dataset (SEN3EXP). Herewith, it appeared that the linear fitting
between NDI and LAl deviated somewhat between model devel-
opment (SPARC) and validation data. Apart from differences in
local conditions, this can also be due to imperfections in the atmo-
spheric correction or due to spectral degradation of the CHRIS
sensor. It should be mentioned that CHRIS/PROBA, being an exper-
imental satellite with initially a one year lifetime suffers from a
small shifting of wavelengths over time. Bands that were originally
configured at 674.42nm and 712.17 nm were shifted to shorter
wavelengths to 672.70 nm and 710.50 nm. While this shift of 2 nm
does not impact much the relatively stable red spectral region, it
may have considerable impact in the red-edge region. Because of
its characteristic steep slope, it means that a 2 nm shift can cause
significant changes in the NDI,_, i.e., being lower positioned in the
red-edge slope. Nevertheless, this anomaly is not foreseen to occur
when the method is applied to images originating from sensors
designed for operational use, such as forthcoming ESA’s Sentinel-2
which aims to deliver a consistent data flow for 12 years long (ESA,
2010).

To end with, the red-edge NDI has been compared against estab-
lished indices. Only the 3-band indices TCARI, TCI and TVI showed
good sensitivities to LAIL Both of these indices rely on bands at
550, 670 and around the red-edge region (700, 750 nm), although
it remains to be evaluated whether these were the most optimized
bands in more variable crop conditions. This suggests that it would
be worthwhile to analyze further the use of generic and estab-
lished more advanced (3- or 4-band) indices and relate them to
multiple biophysical parameters such as LAI, chlorophyll content
and fractional vegetation cover. On the other hand, it is of impor-
tance identifying whether promising indices, e.g. the red-edge NDI,
possess a strong universality. Therefore, in a follow-up study we
aim to further evaluate the utility of promising indices over differ-
ent vegetation types and atmospheric conditions, e.g. by using data
of other campaigns (Delegido et al., 2011a).

6. Conclusions

While the utility of the red-edge spectral region has been
demonstrated in various studies, the majority of these studies have
developed empirical relationships with green LAI on the basis of
ground or airborne hyperspectral data, typically only for one crop
type or in one growth stage. In addition to existing indices, in this
work a red-edge normalized difference index (NDI) has been pro-
posed and validated using spaceborne hyperspectral data over a
large variety of crops. Based on LAI field measurements and CHRIS
hyperspectral data simultaneously collected during the summer
2003 and 2004 ESA SPARC campaigns, we have fully exploited the
hyperspectral information available in the CHRIS image. LAI data
were collected over 10 different crop types in various phenologi-
cal states and water regimes. The predictive power of all available
two-band combinations have been analyzed according to NDI,_p,
a generic variation of the NDVI formulation. The wavebands that
led to best correlation with the LAI dataset were encountered at
674 nm, which is precisely situated in the region of maximal chloro-
phyll absorption and also used by the conventional NDVI, and at
712 nm, which is situated in the red-edge region, a region that is
strongly related to the physiological status of the plant (red-edge
slope related to LAI). It led to an % of 0.82, and contrary to the NDVI
this proposed red-edge NDI did not lead to saturation at higher LAI
values. Another two-band region with high correlations has been
detected in the waveband situated around 674 (same as red-edge
NDI) and 927 nm, situated in the NIR. Such index can be of interest
in view of sensors that have no red-edge bands available. The red-
edge NDI has been subsequently compared against other widely
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used established vegetation indices using the SPARC dataset. The
red-edge NDI outperformed most of the indices but also the 3-band
indices TCARI, TCI and TVI showed good sensitivities to LAl with an
2 on the order of 0.75.

Finally, the predictive power of the red-edge NDI has been
validated by independent LAI field measurements and satellite
observations collected over the same site during the 2009 SEN3EXP
campaign. It was observed that a high linear correlation was main-
tained, although the numerical result depends on the slope of the
regression line. The obtained regression equation was applied to a
CHRIS image for LAl mapping and validated with an RMSE deviation
between measured and estimated LAI of 0.6.

The methodology allows identification of within-field variations
in LAIL, which makes the approach potentially applicable to preci-
sion farming when applied to high spatial resolution imagery.
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