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Abstract 
 Seasonal variation in habitat selection by the mountain goat Oreamnos americanus is 

not well understood due to the difficulties of monitoring animal movement in all months of 

the year.  The use of global positioning system (GPS) wildlife telemetry collars offers an 

opportunity to overcome this obstacle, however satellite acquisition problems associated with 

GPS wildlife telemetry collars create an observational bias of animal locations towards areas 

of favorable signal reception.  To correct for this bias in data from GPS collared mountain 

goats in the Cascades of Washington State, I used an intensive field sampling exercise to 

model the amount of variation in position acquisition rates (PAR) based on remotely sensed 

vegetation and topographic landscape characteristics in a geographic information system 

(GIS) framework.  I then derived GIS habitat maps of predicted potential mountain goat 

habitat in the Western Cascades of Washington. 

I used non-linear mixed modeling with Akaike’s Information Criteria (AIC) and a 

generalized estimating equation (GEE), autoregressive correlation structure (m =1), to 

account for the random effects of the binary clustered GPS bias correction experimental 

design.  I used vegetation data from satellite imagery provided by the Interagency Vegetation 

Management Project (IVMP) and a 10 m digital elevation model (DEM) to derive a set of 

predictor variables.  I sampled GPS PAR at 543 sites across two study areas, the Western and 

Eastern Cascades, which covers roughly 5 million hectares.  I analyzed the data at two spatial 

resolutions, 25 m x 25 m and 75 m x 75 m.  For both study areas, the 25 m x 25 m resolution 

yielded the best models with areas under the receiver-operating curve (ROC) of 0.70 and 

0.69, for the Western and Eastern Cascades, respectively.  Both models fit with expected 

ecological patterns.  These two models were used to produce a continuous GIS raster map of 

predicted GPS PAR for the entire mountain range in Washington.  This data, used with an 

inverse weighting scheme, reduced the signal reception bias found in a habitat study of GPS 

collared mountain goats.  The correction factor helped to account for habitats likely used by 

coastal ecotype mountain goats but unfavorable to GPS satellite acquisition.   

Past research into Washington State's mountain goats has not documented well winter 

habitat selection.  These widely overlooked habitats, lower elevation forests with dense 

canopy cover, may provide critical over-wintering sites for mountain goats.  I analyzed data 

collected over a two-year period from 39 GPS collared mountain goats in the Washington 
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Cascades.  The data set included over 86,000 individual locations from 39 animals.  Each 

location was weighted with the inverse of the predicted GPS PAR to account for the GPS 

bias.  I used a weighted logistic regression procedure with Akaike’s Information Criteria 

(AIC) to choose the most parsimonious model out of an a priori selected set of models.  

Predictor variables were derived from vegetation layers developed by the Interagency 

Vegetation Mapping Project (IVMP) and a 10 m digital elevation model (DEM).  Candidate 

models were developed on the basis of ecological relevance and available GIS data.  I 

partitioned the data into eight datasets, based upon elevation quartiles of mountain goat 

locations and a northern and southern division of available sites.   The individual habitat 

maps were mosaiced into one map and compared with a map generated with the same models 

not taking into account the weighting factor.  The weighted models classified more terrain as 

habitat and had slightly higher classification accuracies.  I also combined predicted potential 

habitat maps with proportional use of each elevation band during summer (July-September) 

and winter (December-April) to examine seasonal differences in habitat use.  The final 

product will assist with management activities, conservation planning and ecological studies 

of Washington's endemic mountain goat populations.       
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Chapter One: 

 

WILDLIFE TELEMETRY GLOBAL POSITIONING SYSTEM (GPS) BIAS 

CORRECTION IN THE CASCADE MOUNTAINS OF WASHINGTON 

STATE, USA 

 

 



Introduction 
The addition of Global Positioning System (GPS) receivers to wildlife radio telemetry 

collars has enabled automated recording of animal position information that has largely 

overcome seasonal, daily and weather related observational biases associated in traditional 

wildlife telemetry studies.  Automated data collection reduced the stress and biases 

associated with repeated disturbance of study animals and decreased positional errors of 

animal locations.  Refinements in hardware, software and the deactivation of selective 

availability have reduce positional error to 10 m or less under optimal conditions (Johnson & 

Barton 2004).  This level of accuracy generally exceeds the spatial resolution of satellite 

imagery and Geographic Information Systems (GIS) data layers used to model habitat.  

(Rempel & Rodgers 1997; Rodges 2001; Di Orio et al. 2003).   

Despite these advantages, GPS receivers often fail to obtain a position under dense 

forest canopy or when topography blocks signals from orbiting satellites (Gerlach & 

Jasumbach 1989).  Ignoring this issue, when evaluating data from GPS-collared animals, 

provides a biased view of habitat use towards areas of favorable GPS reception (Rempel et 

al. 1995; Deckert & Bolstad 1996; Edenius 1997; Dussault et al. 1999; Gamo & Rumble 

2000; Licoppe 2001; Rodgers 2001; D’Eon et al. 2002; Taylor 2002; Di Orio et al. 2003; 

Frair et al. 2004; Cain et al. 2005; Sager 2005).  In light of these findings, I examined the 

GPS Position Acquisition Rate (PAR) across the Cascade Mountain range of Washington 

State for incorporation into a habitat analysis of GPS collared mountain goats Oreamnos 

americanus. 

The Cascade Mountains of Washington State represent a sizeable portion of the 

historic range of the mountain goat (Johnson 1983).  Mountain goats have inhabited the 

Pacific Northwest of the United States and coastal British Columbia Canada for at least the 

past 12,000 years (Nagorsen & Keddie 2000).  This highly recognized, uniquely adapted 

ungulate has also plays a prominent role in the cultural histories of the indigenous people of 

the region.  Over the last 40-50 years, this charismatic species experienced a substantial 

population decrease in many parts of its native range (Table 1).  In particular, this decline has 

been readily apparent in the traditional tribal territories of the Sauk-Suiattle Nation, located 

in the vicinity of Darrington, WA.  Some mountain goat populations in this area have 

decreased by 70-90% over the last 40 years (Ryals, pers. com.)   

 2



This overall decline in population numbers has largely restricted the permitted 

hunting of mountain goats in Washington State for the second time in state history.  

Sanctioned mountain goat hunting started in 1897, was closed entirely in 1925 and resumed 

in 1948 after populations reached carrying capacity (Johnson 1983).  By the mid 1960's, the 

state was annually issuing over 1,000 permits.  By 1997 that number had dropped to 52 and 

in 2005, the Washington Department of Fish and Wildlife (WDFW) issued 19 mountain goat 

permits.  

Between 2003 and 2005, WDFW captured and collared 50 mountain goats in the 

Washington Cascades to establish a baseline of mountain goat ecology.  WDFW wanted to 

assess the magnitude, extent and causes for declines in Washington's endemic mountain goat 

populations.  As part of this study, I have evaluated the relative influence of topography and 

vegetation on GPS PAR with a field-sampling regime.  I hypothesized that the rates at which 

GPS collars successfully recorded data were predictable based on remotely sensed vegetation 

and GIS derived topographic characteristics.  In Chapter One, I developed a predictive model 

encompassing the whole of the Washington Cascade mountain range to weight location data 

acquired from GPS collared animals during a habitat analysis.  The final products were 

designed to assist in future wildlife management efforts, conservation activities and habitat 

connectivity analysis taking into account the observational bias generated by GPS wildlife 

telemetry collars towards areas of favorable satellite signal reception.         

Literature Review of Previously Published GPS Bias-Correction Studies 

 The GPS collar bias issue has stimulated interest in the development of new 

methodologies to minimize these observational biases.  The typical methodology involves 

placing collars in the field, programmed to record GPS fix attempts at a consistent interval 

for a minimum of 24 hours.  The orbital geometry of the constellation of GPS satellites 

repeats once per sidereal day, about 23 hours and 56 minutes (Hoffmann-Wellenhof et al. 

1997), so a 24-hour sampling period covers the full range of satellite geometries at a given 

site.  At each sample location, data from the collars yields GPS PAR, or the percentage of 

successful fix attempts.  Site characteristics either observed on the ground or derived from 

GIS layers provide predictor variables.  A statistical model based upon these data can then be 

developed to predict GPS PAR across the entire landscape. 
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Since 1995, several published studies used this basic approach (Table 2).  These 

studies evaluated GPS performance across areas of a few tens of thousands of hectares.  

Many took place in Canada including studies in coastal and interior British Columbia (Taylor 

2002; D’Eon et al. 2002), Alberta (Frair et al. 2004), Ontario (Rempel et al. 1995) and 

Québec (Dussault et al. 1999).  Studies in the United States occurred in California (Di’Orio 

et al. 2003) the Black Hills of North Dakota (Gamo & Rumble 2000) and in the temperate 

forests of the Olympic Mountains of Washington State (Sager 2005).  The progression of 

these studies reflect an increased understanding and shift of focus from initially 

demonstrating the existence of the GPS PAR observational bias issues, to quantifying the 

effects of the bias and finally correcting for it.  For a more complete list of published studies 

see Cain et al. (2005) who also found that GPS PAR success was correlated with the interval 

of GPS fix acquisition attempts.   

Methods 
Study Area   

The study area spanned the indigenous range of the mountain goat in the Cascades of 

Washington State (Johnson 1983) divided along the Cascade crest into two regions; east 

(2,585,240 hectares) and west (2,744,521 hectares) (Fig. 1). The major ecological zones 

occupied by mountain goats include the subalpine and alpine communities and to a lesser, 

fairly unknown extent, the montane zone (Johnson 1983).  The Cascades house five 

stratovolcanoes, four of them over 3200 m, and numerous peaks surpassing 2000 m.  The 

combination of dense forests and narrow valleys at lower elevations and treeless ridgelines 

higher up provided a range of conditions for testing GPS receivers.  The spatial extent of the 

Inter-Agency Vegetation Mapping Project's (IVMP) Western and Eastern Cascades of 

Washington (O'Neil et al. 2002; Browning et al. 2003) defines the study area boundaries and 

provided the available remotely sensed vegetation data for my analysis.      

The montane zone generally occurs between 450 m and 1050 m extending from the 

dense, lower elevation forests up to the beginnings of the subalpine zones.  In the western 

and northern Cascades, the Pacific Silver fir/Western hemlock Abies amabilis/Tsuga 

heterophylla forests represent the most common forest community (Franklin & Dryness 

1988).  Common associated overstory species include: Douglas-fir Psuedotsuga menziesii 

(Mirb. Franco), Red alder Alnus rubra (Bong.) and Western red cedar Thuja plicata (Donn 
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ex D. Donn).  The eastern slope of the Cascades has more drought tolerant and fire resistant 

tree species.  Ponderosa pine Pinus ponderosa (Dougl. ex Laws) dominates the landscape at 

lower elevations.  Common associates include Douglas-fir, Engelman spruce Picea 

engelmannii (Parry ex Engelm.), Subalpine fir Abies lasiocarpa (Hook. Nutt.) Western larch 

Laryix occidentallis (Nutt.) and Lodgepole pine Pinus contorta (Dougl. Ex Loud.).   

In mesic montane sites, these trees often occur with Skunk-cabbage Lysichitum 

ameicanum, Ladyfern Athytium fillix-femina, Devils club Oplopanex horridum and 

Swordfern Polystichum munitum.  At slightly drier sites, common associates include 

Huckleberry Vaccimuim alaskaense, Dogwood bunchberry Cornus canadensis, Salal 

Gaultheria shallon, Vanilla leaf Achlys triphylla and Oregon grape Berberis nervosa (Topik 

1986).  At some very dry sites, especially further south in the range, Madrone Arbutus 

menziesii and Ocean spray Holodiscus discolor occur (Topik 1986).  At higher elevations 

Xerophyllum tenax, Cascade azalea Rhododendron albiflorum and Fool’s huckleberry 

Menziesia ferrugiea commonly grow (Brockway 1983).    

The subalpine zone ranges between 1050 m and 1500 m and consists of a mixture of 

forests and meadows extending up to tree line.  The lower regions of the subalpine zone 

transition from Western hemlock to Mountain hemlock Tsuga mertensiana (Bong. Carr.)  

with tree stature often reaching full development.  Pacific silver fir grows across both the 

upper montane and into the subalpine zones.  At some of the higher elevations, Subalpine fir 

and Alaska-cedar Chamaecyparis nootkatensis (D. Don, Spach) exist.  Krummholz and 

dwarf shrub communities commonly develop at the higher elevations due to the effects of 

wind, snow and temperature (Taylor 1986). 

  The most pronounced subalpine meadows develop beneath the upper portions of the 

tree line in avalanche paths (Taylor 1986) and after forest fires (Johnson 1983). Vegetation 

community types found within the subalpine include: snowbed (Saxifrage-Woodrush 

Saxifraga tomliei-Luzula piperi and Sedge Carex nigricans) mesic herb (Lupine Lupinus 

latifolis, Fescue Festuca viridula, Huckleberry Vaccinium deliciosum, sedge Carex 

spectabilis, Buckwheat Polygonum bistortoides, Valerian Valeriana sitchensis and Daisy 

fleabane Erigeron pereginus var. scaposus) Dwarf shrub (Heather Cassiope mertensiana, 

Mountain-Heath Phyllodoce empetriformis and P. glanuliflora, Crowberry Empetrum 

nigrum, Bearberry Arctostaphylos uva-ursi, Partridgefoot Luteka pectinata, Huckleberry 
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Vaccinium deliciosum, Everlasting; Pusstoes Antennaria lanata, Willow Salix nivalis and S. 

cacadensis and Mountain-avens Dryas octopetala) and dry gaminoid (Oatgrass Danthonia 

intermedia and Sedge Carex spectabilis and C. var.  pseudoscicrpoidea) (Douglas & Bliss 

1977). 

The alpine zone, dominated by rock and ice and free of overstory vegetation, extends 

up from subalpine zone around 1500 m to the mountain summits.  The high alpine tundra 

provides areas for evaluating GPS-collar performance under the optimal conditions of no 

canopy and views of the sky that are unobstructed by topography (Rempel et al. 1995).  The 

alpine and subalpine zones also typify common impressions and interpretations of mountain 

goat habitat.   

Herbfields, fellfields, and boulder fields characterize the alpine zone (Taylor 1986).  

Vegetation community types found within these features include: dwarf shrub (Mountain-

heath Phyllodoce grandiflora & P. empetriformis and Heather Cassiope mertensiana), mesic 

herb (Lupine Lupinus latifolis and Fescue grass Festuca viridula), dry gaminoid (Oatgrass 

Danthonia intermedia, Reedgrass Calamgrostis purpurascens, Sedge Carex spectabilis, C.  

phaeocephala, C. scirpoidea var.  pseudoscicrpoidea and C. nardina, and Kobresia Kobresia 

myosuroides) and snowbed communities (Sedge Carex breweri C. capitata and C. scirpoide, 

Cinquefoil Potentilla diversifolia var. diversifolia, Goldenrod Solildago multiradiata, Willow 

Salix cascadensis and Fescue Festuca ovina) (Douglas & Bliss 1977).  
Field Work  

I tested collars throughout the study area during the summer of 2004, winter 2004-

2005 and summer 2005.  Prior to collection of field data, I benchmarked the Vectronic-

Aerospace GPS Plus collars (v6, Vectronic Aerospace, Berlin Germany) at a known location 

with an unobstructed view of the sky to ensure proper functioning (Moen et al. 1997).  For 

logistical reasons, I sampled sites near existing trail networks.  Random selection of field 

sites for collecting PAR data was not practical due to the rugged inaccessible terrain.  I 

generally sampled above a minimum elevation of 1000 m, and placed collars at least 200 m 

apart.  Field placement of GPS units mimicked the height and orientation of a GPS unit on a 

collared mountain goat, approximately 1.0 m above ground.  GPS units were secured with 

bamboo tripods or natural materials found on site, including saplings, tree branches, downed 

logs, stumps and rocks.  Field measurement taken at each site for ground-truthing GIS data 
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layers included: aspect, slope, elevation and canopy cover.  Site selection focused on areas 

with relatively uniform vegetation characteristics within 30-50 m of the GPS units.  Ignoring 

this issue, and using sites near the edge of a forest or alpine meadow, for example, could 

have resulted in differences between actual site conditions and the GIS data due to mis-

registration of the raster files.  

GPS units were programmed to attempt a 3-minute fix every 30 minutes for no less 

than 24 hours (Frair et al. 2004).  Positional dilution of precision (PDOP) of the Vectronic-

Aerospace collars reached 48.6 when a fix attempt failed.  The collars ignored satellites 

within 5° of the horizon in order to minimize multi-path errors (Schulte, personal 

communication).  I calculated average positional location for all successful fixes for data 

extraction and calculated PAR as the percentage of successful fix attempts (including both 

2D and 3D fixes) during the full duration of GPS unit deployment (D’Eon et al. 2002).   

 I also deployed a Trimble GeoExplorer3 handheld GPS unit (v1.20, Trimble 

Navigation Ltd., Sunnyvale, California USA) within 3 m of the collar at some of the sites to 

test relative GPS PAR between brands and to determine if GPS PAR model development was 

possible with alternative manufacturers once collars were unavailable.  Configuring the 

Trimble units with custom external battery packs enabled 24-hour continuous operation.  I 

programmed a 15-minute (900 s) interval of fix attempts to match the 30-minute interval of 

the Vectronic collars.  The Trimble units had a maximum time interval of 999 s.  I set the 

Trimble horizontal dilution of precision (HDOP) mask to 60 initially, the signal to noise ratio 

mask to 1 and an elevation mask of 5°.  I reset the HDOP to 48.6 after preliminary data 

collection to match the Vectronic units.  After analyzing the performance of Vectronic versus 

Trimble data from the summer of 2004, I also analyzed the relative performance of pairs of 

Vectronic units.  During the winter of 2004-2005, I tested the Vectronic collars against each 

other to look at simultaneous performance of the collars under equivalent site conditions.  At 

a limited number of sites I placed two collars within 1 m of each other programmed to record 

fixes on the same 30-minute interval.   

GIS Data 

Vegetation Predictor Variables: 

Variables derived for statistical modeling of GPS PAR came from existing, 25 m 

resolution, raster files created by the Interagency Vegetation Mapping Project (IVMP), 
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utilizing Landsat imagery from the mid-1990's (O’Neil et al. 2002; Browning et al. 2003).  

The IVMP data consists of four vegetation layers: percent total vegetation cover (TVC), 

percent conifer cover (CC), percent broadleaf cover (BC) and quadratic mean diameter of 

overstory trees (QMD).  The IVMP provides each of these four layers as continuous 

variables, but recommends subdividing each layer into three or four user-defined categories 

based on tradeoffs between accuracy and category size.   To remain consistent with the 

release documentation of the IVMP data sets and accuracy assessment, I classified each 

vegetation layer into discrete categories based on the frequency distribution of the number of 

sites in each class (Table 3).  I attempted to maintain an even balance of the number of sites 

in each class.  Documentation provided by IVMP indicates this categorization of data layers 

should yield classification accuracies of approximately 78% (TVC), 73% (CC), 46% (BC) 

and 62% (QMD) for the westside and 68% (TVC), 55% (CC), 61% (BC) and 57% (QMD) 

for the eastside. 

Topographic Predictor Variables: 

I derived topographic predictor variables from a 10 m digital elevation model (DEM).  

I masked the necessary DEM to the spatial extent of the IVMP data and resampled the pixel 

size to 25 m.  In addition to elevation, I created slope, aspect and sky visibility data layers 

(Deckert & Bolstad 1996; Gamo & Rumble 2000; D’Eon et al. 2002).  The sky visibility 

layer considered the uneven distribution of GPS satellite orbits in the sky.  The existing 

constellation of GPS satellites, distributed in 6 orbital planes inclined at 55° relative to the 

equator (Hoffmann-Wellenhof et al. 1997), dictates that no GPS satellites pass over a 

substantial portion of the sky (Fig. 2).  In generating the sky visibility layer (Appendix A), I 

excluded portions of the sky within this “hole” from the calculations and I expected sample 

sites located on northerly aspects to achieve lower PAR then those on southerly ones. 

Stratification 

 The logistical challenges associated with sampling the full range of conditions across 

a 5 million hectare study area warranted substantial consideration.  Examination of the IVMP 

and DEM files insured field-sampling efforts focused on the major combinations of GIS 

derivable topographic and vegetation site characteristics in the region.  I stratified both study 

areas using a merged set of predictor variables (Table 4); forest type (based on the first three 

IVMP layers), QMD classes, slope combined with aspect (flat, steep and north facing, or 
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steep and south facing) and sky visibility.  I used identical stratification rules for both areas 

with the exception of QMD classification.  Cross-tabulation resulted in 81 different 

combinations of these four variables in the western half of the study area and 54 in the 

eastern half.  Due to logistical constraints, the majority of field sampling on the western slope 

concentrated in the northern portion (Mount Baker-Snoqualmie National Forest) of the study 

area and on the eastern slope in the southern portion (Wenatchee National Forest) (Fig. 1).   

Data Analysis  

Extraction: 

 For each sample site, I extracted predictor variables from the IVMP and DEM layers.  

I developed two sets of predictor variables for each half of the Cascades (Table 5).  The first 

set of variables was extracted for the single 25 m by 25 m grid cell that contained the sample 

site.  The second set of predictor variables was extracted for a three by three or 9 75 m x 75 

m square extraction window that was centered on the pixel containing each sample site.  

These two data sets enabled examination of the relationship between GPS performance and 

site conditions at two spatial resolutions.    

Modeling:    

I initially examined the breadth of coverage that field sampling efforts yielded based 

upon the stratification classifications rules for both study areas.  I looked at relative 

performance of GPS units between brands and among collars and screened for outliers based 

on cluster size and improbable GPS PAR values.  GPS PAR rates of less than 10% were 

excluded from the analysis due to suspected collar malfunctions or disturbances to the 

sample site. 

I used non-linear mixed modeling logistic regression, information theory and 

generalized estimating equations (GEE) to model GPS PAR as clustered binary responses 

(Pendergast et al. 1996; Heagerty 1999; Horton & Lipsitz 1999; Hosmer & Lemeshow 2000; 

Teachman & Crowder 2002).  Fix attempts at each trial site, coded as successful or not, had 

the same predictor variables over the course of the entire sampling period.  The lack of 

independence due to repeated observations at each sample site required modeling of the 

internal correlation structure by means of a GEE.  The GEE modeling changed the values of 

the standard errors bounding the parameter coefficient estimates from those obtained by 

ordinary logistic regression.  Use of the auto-regressive (m=1) GEE was based on the 
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observation that the correlation structure of the waypoints clustered by site had some 

diagonal relationships.  The fact that the constellation of the GPS satellites repeats just short 

of a full 24 hour day meant that the correlation structure within sites shifted as a function of 

position within the cluster.  The moment that the satellites were in the same configuration as 

the previous day shifts four minutes back each time the satellites repeat their orbital 

geometry.  This shifts the correlation structure within the sample sites across the data set.         

I a priori selected a set of models for testing GPS PAR for each of the two spatial 

resolutions  (Burnham & Anderson 2002).  I tested a global model utilizing all of the 

applicable predictor variables and selected model subsets (Appendix B).  For each spatial 

resolution, I selected the most parsimonious models based on non-linear mixed modeling 

procedure (Appendix C) and the AICc.  I calculated the area under the receiver-operating 

curve (ROC) for both spatial resolutions' most parsimonious model using the ROC package 

in R (Gentleman et al. 2004; Development Core Team 2005).  The parameter estimates, 

confidence intervals and robust standard error estimates were generated with SAS (8.0, SAS 

Institute Inc. Cary, NC) using an auto-regressive GEE.  In selecting a model to use for 

mapping GPS PAR in each province, I used the most parsimonious model for the resolution 

with the highest area under the ROC (Pearce 2000) and calculated variance inflation factors 

(ĉ).  

I analyzed site level GPS PAR data based on the most parsimonious models for the 

optimal spatial resolution to quantify predictive power.  I randomly split the data in half for 

model building and testing subsets.  I regenerated parameter estimates with the selected 

models using the building subset and calculated GPS PAR for the remaining data in the 

model testing subset.  I applied the model testing data created from all acquisition attempts to 

the site level data of each GPS PAR test site and plotted observed GPS success against the 

predicted GPS PAR of each trial site.  I calculated the coefficient of determination to 

quantify the amount of variation explained by the models (Menard 2000) 

I painted predictive maps of GPS PAR for each province and merged them into one 

data layer.  I used ArcMap 9.0’s Spatial Analyst Raster calculator to calculate the pixel-by-

pixel values of predicted GPS PAR across both study areas.  I mosaiced the study areas 

together to form one layer for the entire Cascade Range of Washington State.  I designed the 

final data layer for incorporation into a habitat analysis based upon an inverse weighting 
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scheme of predicted GPS PAR for a fix acquired from collared animals.  These final data 

layers calculated the predicted GPS PAR for each 25 X 25 m pixel based on the logit formula 

(eqn 1) and the predicted probability (eqn 2). 

 

Y= ß0 + ß1 X1 + ß2 X3 +…+ ßp Xp + e  eqn 1 

 

GPS PAR = exp Y /(1 + exp Y)   eqn 2 

Results 
Ground Truthing 

 A correlation analysis showed a high degree of correlation between field 

measurements of topographic features and GIS predictor variables.  Elevation measured in 

feet in the field and the data from the 10 m DEM had a simple correlation coefficient of R = 

0.92.  Aspect and slope, both derived from the 10 m DEM, had values of R = 0.56 and R = 

0.60, respectively.  Vegetation data recorded in the field with a spherical densiometer and 

total vegetation cover derived from the IVMP as a continuous variable had a lower value of R 

= 0.37 (Zar, 1996).  Spherical densiometer measurements are often quite subjective 

especially when multiple observers are used (Vales & Bunnell 1988).       

Stratification 

I sampled GPS PAR at a total of 543 sites (Fig. 1) in the Washington Cascade 

Mountain Range.  In the Western Cascades Province, I sampled GPS PAR at 209 sites during 

the summer of 2004, 64 sites during the winter of 2004-05 and 51 sites during the summer of 

2005.  In the Eastern Cascades Province, I sampled GPS PAR at 219 sites during the summer 

of 2005.       

Of the 81 possible combinations of variables (Table 4) in the west side stratification 

model, 42 conditions each individually covered more than 0.5% of the study area for a total 

of 94.33% of the Western Cascade Province.  I sampled 39 of these 42 combinations.  The 

three combinations omitted, defined as Mixed/Broadleaf forests with varying topography, 

covered 2.59% of the study area.  All together, west side sampling efforts covered 91.74% of 

the defined stratification classes by area.   

Of the possible 54 combinations of variables on the east side, 34 each individually 

covered more than 1% of the study area, for a total of 88.9% of Eastern Cascade Province.  I 
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sampled 33 of these 54 total combinations for a grand total of 94.2% of total area.  One 

dominating cover type (flat open sites with high sky visibility) accounted for 21.6% of the 

total area, and 16.4% of the samples.  

By elevation, the distribution of our sample sites was similar to that of over 30,000 

mountain goat locations (from over 40 mountain goats).  I over-sampled slightly at lower 

elevation (<1,000 m) and under-sampled slightly at higher elevations (>1,600 m) (Fig. 3).        
Collar comparison 

Trimble vs. Vectronic: 

 Of the 138 sites with both a Trimble GeoExplorer3 data logger and a GPS collar the 

correlation coefficient (Zar 1996) of GPS PAR between these units was R = 0.67 (Fig. 4).  

Most of the results of GPS PAR fell within the 90-100% range.  Neither brand consistently 

outperformed the other.    

Vectronic vs. Vectronic: 

 At the 16 sites during the winter of 2004-2005, I placed two Vectronic collars under 

“identical” conditions to assess relative GPS PAR.  The correlation coefficient (Zar 1996) of 

GPS PAR between these sites was R = 0.83 (Fig. 5).   

Global positioning system position acquisition rate; GPS PAR 

Vectronic Collars: 

The 324 Western Cascades sample sites originally consisted of 20,740 acquisition 

attempts.  I removed seven sample sites entirely due to poor GPS PAR suggestive of 

equipment problems.  Although all sample sites had a minimum sampling period of 24 hours, 

some sites recorded data for upwards of 72 hours.  These large differences in the number of 

fix attempts per site caused the statistical program to fail due to difficulties in modeling the 

correlation structure within sites.  Therefore, I used a maximum of 48 attempts per sample 

site for the Westside data.  This reduced the data set to 15,550 acquisition attempts.  I 

retained all the 219 Eastern Cascade sample sites tallying 11,057 acquisition attempts since 

the data had a smaller range of sample site fix attempts.  The more even sampling allowed for 

successful modeling of the correlation structure.  The average overall GPS PAR in the 

Western and Eastern Cascades was 78.8% and 92.4%, respectively.   

Out of the entire set of a priori defined models (Appendix B), the three highest 

ranked models in each data set had Akaike's weights >0.01 (Table 6).  The most 
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parsimonious Western Cascade model had an area under the ROC of 0.70 based on a 25 m x 

25 m spatial resolution and 0.69 based on a 75 m x 75 m spatial resolution.  This suggested a 

slightly higher predictive power of the 25 m x 25 m resolution.  The Western Cascade 75 m x 

75 m resolution also had small effect size (P>|z| <0.001) for two variables' parameter 

estimates and multiple coefficient confidence intervals bounding zero.  The Eastern Cascade 

models had nearly equivalent areas under the ROC (0.68) based on the 25 m x 25 m and the 

75 m x 75 m resolution.  Considering that both spatial resolutions returned the same model 

parameters for the most parsimonious Eastern Province models this result was not 

unexpected.  For the Western Cascades model, I opted to use the model based on a 25 m x 25 

m spatial resolution due to the area under the ROC and for consistency sake, the same spatial 

resolution on the east side.   

The coefficients for the 25 m x 25 m models for Cascade GPS PAR (Tables 7 & 8) 

indicated strong evidence of significance and confidence intervals that did not bound zero.  

These models also have similar variable types, the cosine of aspect in radians and one entire 

class of categorical vegetation variables.  The global models yielded variance inflation 

factors for the western province (ĉ = 8.4) and eastern province (ĉ = 19.5) indicating some 

structural lack of fit.   

Analysis of the coefficient of determination based on randomly splitting the data and 

regenerating parameter estimates based upon the previously selected model returned similar 

values for both provinces.  The Western Cascades model (R2 = 0.175) and the eastern (R2 = 

0.184) each explained almost 20% of the variation of GPS PAR based on remotely sensed 

vegetation and topographic predictor variables (Fig. 6 & Fig. 7).  

Mountain goats: 

I examined approximately 10,000 GPS fixes over the course of two years of summer 

and winter data from 16 mountain goats in the Mt. Baker-Snoqualmie National Forest.  I 

arbitrarily defined summer and winter seasons by dates; as July 1st to August 15th and 

November 15th to January 1st, respectively.  Summer GPS PAR rates from collared goats 

exceed 50% for each animal with the majority of rates above 80% ( x = 81%).  Conversely, as 

expected, most winter GPS PAR rates decreased and were generally around 40% ( x =44%) 

(Fig. 8).  
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Painted PAR map 

To include estimated GPS PAR  (Fig. 1) into a habitat analysis across the entire study 

area, I created a data layer based on the selected model using the 25 m x 25 m spatial 

resolution (Table 7 & 8).  The Western Cascade model included the cosine of aspect in 

radians and the amount of coniferous coverage while the Eastern Cascade model included the 

cosine of aspect in radians and the amount of total vegetation cover.  As expected, the 

Cascades generally showed a much higher probability GPS PAR east of the Cascades crest.  

Surprisingly, southerly aspects showed a lower PAR throughout the range.  A closer 

examination of the odds-ratios of obtaining of GPS fix by aspect binned into the eight 

cardinal direction revealed this pattern in both data sets.  The final model also yielded GPS 

PAR ranging from 64% to 99%.     

 

Discussion 
The predictive ability of my bias correction model for the Cascades of Washington 

performed as expected based on the range of values previously reported in the literature.  

This study however, encompassed a much larger area and therefore intensive sampling 

scheme and stratification.  I over sampled lower elevations where expected bias in the 

mountain goat data prevailed.  I omitted a few areas of low topographic relief and vegetative 

obstructions from the sampling.  Collar comparison between brands dismissed future use of 

Trimble Geo3 Explorer's from inclusion in model development due to lack of consistency 

and low correlation between brands.  Comparison among Vectronic units and predictive 

power suggested that micro-site features played a critical and hereto unexplained role in GPS 

PAR.  The final chosen models for both sides of the Cascades fit with ecological expectations 

and had exceptable area under the ROC scores but with a measure of over dispersion entering 

the data.  The final product, a GIS raster dataset, incorporated into habitat modeling as the 

inverse of expected GPS PAR reduced observational bias of GPS collared mountain goats.  

This bias correction factor will help account for areas used by GPS collared wildlife that 

have poor expected GPS satellite signal reception.          

Stratification 

At 5 million hectares, this analysis covered a much larger area than previously 

published studies of GPS PAR both in terms of the number of sample sites and the spatial 
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extent of the study area.  I felt confident that the stratified sampling scheme provided 

adequate coverage in order to extend the results to the entire study area and range of 

conditions therein.  I felt justified applying the final GPS PAR model to the entire study area 

due to careful sampling of these stratification classes used in accordance with the IVMP 

release documentation (O’Neil 2002 et al.; Browning et al. 2003).  On the west side, the 

combinations of vegetation and topography that I omitted represented mixed and broadleaf 

forest types that I did not expect to be used by mountain goats, nor did I expect to be of any 

consequence to GPS PAR due to the predominately evergreen nature of the forest 

communities in western Washington.  On the eastside, I did not sample stratification classes 

that composed 5.80% of the study area.  Only one of these classes (southern facing open sites 

with sky visibility of 61-70%) composed more than 1% of the study area individually.  

Without empirical evidence, I expected a high GPS PAR at such sites. 

The elevation distribution of sample sites resembled the elevation distribution of 

locations obtained from GPS collared mountain goats (Fig. 3).  I slightly over-sampled lower 

elevations since these elevations typically had lower PAR due to dense forest cover and 

greater topographic obstructions.  I anticipated that these sites presented greater challenges 

for adequately characterizing habitat use due to lower PAR.  The elevation distribution of 

bias correction sample sites accounted for this expected range of data loss. 

GPS data loss, and subsequent observational bias, from collared goats occurred more 

often in the winter when mountain goats descend to lower elevations (Fig. 8).  Data acquired 

over two years of collection from collared animals thus exhibited the anticipated GPS bias 

that PAR-modeling efforts reduced. 

Collar Comparison 

 In the side-by-side comparison of GPS units between brands neither the Trimble 

Geo3Explorer (R = 0.67) nor the Vectronic-Aerospace unit consistently outperformed the 

other.  The low correlation between brands (Fig. 4) and the slightly higher correlation among 

Vectronic-Aerospace collars (R = 0.83) (Fig. 5) contradicted my expectations.  I expected 

one of the brands to consistently and predictably outperform the other.  These poor 

correlations may have resulted from variation in performance among individual GPS units of 

one or both brands.  My experimental design was not ideal for addressing this issue.  I did not 
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expect nor test for this hypothesis and excluded any GeoExplorer3 data in the bias correction 

model.      

The slightly higher correlation among the Vectronic units may have been due to the 

use of identical units.  Another interpretation suggested that the generally low correlation was 

due to differences in canopy architecture at the microsite level.  In the Trimble vs. Vectronic 

comparison, the units were placed up to 3 m apart and in the Vectronic vs. Vectronic 

comparison, the units were placed closer together; no more than 1 m apart.  Even for GPS 

units located 1 to 3 m apart; there are minor differences in the relative position of tree boles 

and small canopy openings.  These differences have been enough to provide a different view 

of the sky and differences in access to satellites resulting in different GPS PAR between units 

placed only a few meters apart.  The slightly higher correlation of the Vectronic vs. 

Vectronic comparison may have resulted from more comparable microsite condition for units 

located 1 m apart rather than for units place 3 m apart.  When using a handheld GPS unit in a 

forest it is not uncommon to lose or gain satellite contact after moving only a few meters.  If 

this variation in canopy architecture at the microsite level was in fact a major factor in 

controlling GPS PAR, then the correlation coefficient (R = 0.67) of the Trimble vs. Vectronic 

pairing may provide a rough estimate of the upper limit of how much variability in PAR can 

be explained on the basis of macro-scale site conditions derived from GIS data.        

These findings of predicted GPS PAR and low correlation among GPS units placed at 

the same site suggested an unmeasured component of the forest canopy heavily impacting 

GPS PAR.  This, again, remained consistent with prior studies on this subject that explained 

only a portion of GPS PAR bias (Table 1).  This GPS PAR bias correction study ultimately 

only reduced, but did not eliminate, bias due to satellite signal blockage.  The scale that 

satellite signal interference occurred most likely surpasses the scale at which the predictive 

model operated.  A broad characterization of the landscape, such as the 25 m resolution level, 

characterized those types of habitats where micro-site heterogeneity was likely to increase 

(i.e. increased canopy cover, larger trees and more conifers) but did not account for all site 

specific factors determining GPS PAR.  Nevertheless, this model explained nearly one fifth 

of the variation in GPS PAR.   

The remaining variation in PAR possibly controlled by micro-site conditions might 

be described on the basis of detailed stem maps and hemispherical photographs of the 
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canopy.  In principle, these measurements could be obtained for a limited number of sample 

points but impractical to utilize over any study area of reasonable size.  Another alternative 

might incorporate Light Image Detection and Ranging (LIDAR) data (Lefsky et al. 2002).  

LIDAR has made it possible to quantify aspects of forest canopy structure including canopy 

height and vertical biomass distribution quickly and continuously over large areas.  As 

LIDAR becomes more available, incorporation of these data into GPS PAR analyses might 

facilitate characterization of micro-site features at a finer scale, both in terms of vegetation 

and topography.  

An alternative approach considered for correcting GPS bias involved an iterative 

process to estimate missed animal locations based on predicted GPS PAR, known animal 

locations, and theoretical movements across the landscape (Frair et al. 2004).  This approach 

however, warranted far more intensive data management, calculations and corrections for 

individually missed animal locations and did not perform as well as GPS PAR modeling.    

Global positioning system position acquisition rate; GPS PAR 

Once final models were selected for both spatial resolutions and for both study areas, 

I needed to select one or the other for final development.  I opted to use the area under the 

ROC curve to distinguish if the 25 m x 25 m or the 75 m x 75 m spatial resolution performed 

better.  On the west side, the small difference between 0.69 (75 m) and 0.70 (25 m) 

warranted use of the finer resolution.  The east side model's area under the ROC curves were 

virtually identical, so in order to remain consistent with the west side model I opted to use the 

25 m x 25 m spatial resolution.  Area under the ROC values > 0.70 indicated “a reasonable 

discrimination ability appropriate for many uses,” (Pearce & Ferrier 2000).  The final model 

thus utilized 25 m x 25 m spatial resolution for the entire study area.     

After selecting the models developed at the 25 m x 25 m resolution, I tested the 

global models of both data sets for over dispersion and goodness of fit.  Variance inflation 

values much greater then 4 indicated structure lack of fit and over dispersion of the data for 

both models (Burnham & Anderson 2002).  The predictive model did not perform well at low 

predicted probabilities (<0.60) when compared with observed PAR rates, displaying poor 

model refinement (Figs. 6 & 7).  The final data layer, however, had values ranging from 0.64 

to 0.99.   
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Mapping 

The final model developed for the Washington Cascades predicted GPS PAR across 

mountain goat habitat and reduced observational bias generated by vegetative and 

topographic features of the landscape.  Final predictor variables included: the total vegetation 

cover, coniferous coverage and aspect.  The predictive model of GPS PAR developed from 

stationary collars sampled across the mountain range performed within the range of 

expectation based on previous research in this field (Rempel et al. 1995; Deckert & Bolstad 

1996; Edenius 1997; Dussault et al. 1999; Gamo & Rumble 2000; Licoppe 2001; Rodgers 

2001; D’Eon et al. 2002; Taylor 2002; Di Orio et al. 2003; Frair et al. 2004; Cain et al. 2005; 

Sager 2005).  This supported the application of a bias correction factor to analysis of GPS 

data from collared mountain goats.         

The final data layers predicted GPS PAR for collared mountain goats across the 

Western and Eastern provinces of the Washington Cascades.  These combined into one final 

data layer predicting GPS PAR across both IVMP Washington Cascade regions.  Much of 

these regions lie below 800 m in elevation beneath the minimum sampling elevation.  The 

overriding nature of vegetation variables impacting GPS PAR more so than topography 

allowed reasonable extrapolation of the model to these lower elevations.  The analysis 

indicated that elevation alone was not a strong predictor of PAR.  This suggested that the 

model may perform adequately even at low elevations if the canopy cover of the forest did 

not change much from the lowest sampled GPS PAR.  Examination of the eastern reaches of 

the data layer where the mountains begin to merge with the central Washington highlands 

and deserts predicted a high PAR, as expected.  Closer examination of detail on the map and 

parameter estimates provided one counter intuitive finding.  In the Washington Cascades, 

southern facing slopes predicted a lower GPS PAR, not what was expected based on the 

satellite sky plot of GPS satellite orbital geometry (Fig. 2).  I expected that the gap in satellite 

coverage over the north pole to result in lower GPS PAR on slope facing this direction.  

Applying such a model outside the study area and with different hardware was not 

recommended by any of the previous authors published in this field of research.  I certainly 

agreed with the notion of not applying this model to areas outside the Cascades of 

Washington (although areas of the Oregon Cascades might have applied), however, I 

considered the merits of applying this data layer to other GPS collared wildlife with in the 
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region.  The fundamental decision to do so lies within any future projects’ objectives, 

resources available, known improvements or difference in hardware, margins of error and 

costs of a Type I or Type II error.       
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Tables  
Table 1:  Population estimates of mountain goats across portions of their native range since 

the 1960's depicting a long-term decline in the population.  

     
British Columbia 

• 1961-est. 100,000 

• 1977-est. 63,000 (Macgregor 1977) 

• 2000-est. 36,000-63,000 (Côté and Festa-Bianchet 2003) 

Washington 

• 1961-est. 10,655 

• 1983-est. 7350 (Johnson 1983) 

• 2005-est. 3500-4000 (Rice pers. comm. 2005)   

Entire Range-introduced and native 

• 2000-est. 75,000-110,000 (Côté and Festa-Bianchet 2003) 
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Table 2: Prior studies of GPS wildlife telemetry observational biases. 

Author   Test  Test Statistic  Independent Variable 

Rempel et al. 1995 1LR  X2  (P < 0.001)  tree spacing 

Dussault et al. 1999 2SMLR R2= 0.16 (fall)  tree height   

R2=0.34 (winter) tree height, basal area of 

deciduous trees 

Gamo & Rumble  SMLR  

2000   R2= 0.39 (P.ponderosa) slope, CC 

R2= 0.40 (P.tremuloides) Visible Horizon, Dbh  

R2= 0.50 (P.glauca)  CC   

  

D ‘Eon et al. 2002  SMLR  R2= 0.22  4CC, 5SV 

Taylor 2002  SMLR  R2= 0.76  SV, 6age, clearings 

Di’Orio et al. 2003 SMLR  R2= 0.57  basal area 

 

Frair et al. 2004  LR 3AIC ROC= 0.68  vegetation type, slope 

Sager 2005  LR  ĉ=1.0282  CC, SV, 7elev., CC*SV 

 
1LR= Logistic Regression, 2SMLR= Stepwise Multiple Linear Regression, 
3AIC= Akaike information criterion, 4 CC=Canopy Cover, 5SV=Sky Visibility, 6age=Forest 

age & 7elev.= elevation 
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Table 3:  Discrete categorization of vegetative predictor variables for the Western (wcw) and 

Eastern (ecw) Cascades of Washington GPS PAR data.  Bold face type of the region 

indicates selected variables in final model. 

 

1. Percent Total Vegetation Cover (TVC);  

 wcw & ecw:  0-60% , 60-90% & 90-100%  

2. Percent Conifer Cover (CC);  

 wcw & ecw:  0-40%, 40-80% & 80-100%    

3. Percent Broadleaf Cover (BC);  

 wcw & ecw:  0%, 0-10%, 10-20% & 20-100%, 

4. Quadratic Mean Diameter of overstory trees (QMD); 

 wcw: 0, 0-25.4 cm, 25.4-50.8 cm & >50.8 cm 

 ecw:  0-12.4 cm & >12.4 cm 
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Table 4:  Stratification variable organization and definition used in field sampling efforts of  

GPS PAR across the entire Cascades of Washington based on the IVMP data sets. 

1.   Forest type  

 Open:  TVC <30%     

 Semi-open: 30% > TVC < 70%    

 Conifer: TVC > 70%; CC >= 70%   

 Mixed:  TVC > 70%; CC and BC < 70%   

2.  QMD  

 Western Cascades    

 0-30 cm         

 31-60 cm       

 61-190cm  

Eastern Cascades 

 0-25cm 

 25-190cm 

3.  Slope and aspect  

 slope < 20 degrees    

 north-facing slopes > 20 degrees   

 south-facing slopes > 20 degrees      

4.  Sky visibility 

 0-60%  

 60-70%  

 70- 80%  

 80-100%  
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   1&9  Mode of BC2    BC 

Vegetative  1&9  Mode of QMD1   QMD 

   9  Sky visibility; standard deviation SVSD 

   1&9  Sky visibility; mean   SV 

Topographic  1&9  Cosine of radial aspect   ASP 

Type  Sampling Window Variable    Nomenclature 

and a 75 m x 75 m spatial resolution used to build predictive models of GPS PAR. 

Table 5:  Definition of predictor variables and nomenclature thereof for a 25 m x 25 m  

1&9  Mode of TVC4   TVC 

9  Number of CC classes    

9  Number of TVC classes   

1&9  Mode of CC3    CC 

9  Number of BC classes    

9  Number of QMD classes   

9  Elevation; standard deviation  ELEVSD 

1&9  Elevation (m); mean    ELEV 

9  Slope; standard deviation   SLPSD 

1&9  Slope (degrees); mean   SLP 

QMD1=Quadratic mean diameter, BC2= Broadleaf cover, CC3= Conifer cover & 

TVC4=Total vegetation cove



Table 6: Results from model testing of Cascade GPS PAR based on a 25 m and 75 m spatial resolution for the Western and Eastern 

Cascades of Washington State, USA shown with negative log likelihood (-LL), number of parameters (K), Akaike’s Information 

Criteria (AICc), criterion difference (∆i) and weights (wi).  

Region Resolution Rank Model    -LL  K AICc  ∆i wi  

    2 ASP, SLP, ELEV & TVC 2395.2  6 4804.4  1.2 0.35 

    3 ASP, SLP, ELEV & TVC 5185.7  6 10385.3 6.8 0.03 

    3 ASP, TVC, QMD & CC 2396.6  4 4805.3  2.3 0.14 

East  25 m  1 ASP & TVC   2396.6  4 4803.2  0 0.63 

East  75 m  1 ASP & TVC   2396.5  4 4803.0  0 0.46 

    2 TVC    6983.2  4 13973.1 0.6 0.30 

    3 ASP, CC & QMD  2400.2  4 4810.4  7.2 0.02 

    3 ASP & TVC   6980.5  5 13973.1 0.6 0.30 

    2 CC     5186.9  3 10381.8 3.3 0.16 

West  25 m  1 ASP & CC    5184.2  4 10378.5 0 0.81 

West  75 m  1      ASP, SLP, ELEV, SV & TVC 6980.5  7 13972.5 0 0.40 

    2      ASP, SLP, SLPSD & ELEVSD 2394.2  6 4803.3  0.3 0.40 
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Table 7: The most parsimonious selected model for the Western Cascades of Washington 

GPS position acquisition rate's parameters, coefficients (β) robust error estimates and 

confidence intervals (n =15,550; N =317) based on a 25 m x 25 m resolution with an auto-

regressive GEE (m=1) modeling correlation structure. 
 

           

Variable  β  Std. Err.  z P>|z|  [95%] 

ASP 0.2568 0.1235 2.08 0.0376 0.0147 0.4989 

CCdv2 -1.0156 0.3013 -3.37 0.0007 -1.6061 -0.4251 

CCdv3 -1.7966 0.2799 -6.42 <0.0001 -2.3451 -1.2480 

Intercept 2.6484 0.2584 10.25 <0.0001 2.1420 3.1549 

 

 

Table 8:  The most parsimonious model for the Eastern Cascades of Washington GPS 

position acquisition rate's parameters, coefficients (β) robust error and confidence intervals (n 

= 11,057; N = 219) based on a 25 m x 25 m spatial resolution with an auto-regressive GEE 

(m=1) modeling correlation structure. 
  

Variable  β  Std. Err.  z P>|z|  [95%] 

ASP 0.4291  0.1685 2.55 0.0109 0.0989 0.7594 

TVCdv2 -0.9634 0.3119 -3.09 0.0020 -1.5747 -0.3521 

TVCdv3 -1.6989 0.2900 -5.86 <0.0001 -2.2673 -1.1306 

Intercept 3.5887 0.2637 13.61 <0.0001 3.0719 4.1055
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Figures  

 
 

Fig. 1:  Map showing predicted GPS Position Acquisition Rate (PAR) for the Cascades of 

Washington State used to offset bias generated during habitat analysis of GPS data from 

collared mountain goats.  This combines the two study areas, east and west of the 

Cascade crest, into a single unified data layer and shows the location of sample sites. 
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Fig. 2:  Skyplot showing orbital geometry of GPS satellites in the sky as viewed from 

Seattle, WA showing a gap in coverage over the north pole.  Image generated with 

Trimble's Planning Version 2.7 © available free online.  
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Fig. 3:  Distribution of elevations sampled during GPS bias correction work and elevations sampled from over 30,000 mountain goat 

GPS fixes showing a slight under sampling of GPS PAR at higher elevations and over sampling at lower elevation where GPS PAR 

from mountain goats was expected to be higher and lower, respectively.
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Fig. 4:  Relative GPS PAR between a Trimble GeoExplorer3 and Vectronic-Aerospace  

wildlife telemetry collar at 138 sites across the Washington Cascades shown with a one to 

one fit line.   

 
Fig. 5:  Correlation of GPS PAR between two Vectronic-Aerospace GPS  

wildlife collars place within 1 m of each other at 16 different sites in the North Cascades 

shown with a one to one fit line. 
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Eastern Cascades of Washington (ecw) based on a 25 m x 25 m using all fixes shown 

with a line of best fit. 

Fig. 7:  A comparison of observed GPS PAR and predicted GPS PAR for the  

Cascades of Washington (wcw) based on a 25 m x 25 m spatial resolution using all fixes 

shown with a line of best fit. 

Fig. 6:  A comparison of observed GPS PAR and predicted GPS PAR for the Western  

 

 



Fig. 8:  Seasonal comparison of GPS PAR from collared goats in the northern region of the Western Cascades based on 10,000 

locations obtained between July 15 to August 31 of 2004 and 2005 (black) and December 15 to January 31 during the winters of 2003-

04 and 2004-05 (white).     
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Chapter Two: 

 
 

HABITAT SELECTION BY MOUNTAIN GOATS OREAMNOS 

AMERICANUS IN THE WASHINGTON CASCADE 
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Introduction 
Mountain goats inhabit some the most rugged terrestrial environments of the North 

American west (Côté and Festa-Bianchet 2003).  The harsh environment that they inhabit 

results in low fecundity, low survivorship and poorly understood population dynamics 

(Adams and Bailey 1982).  Their selection of cliffs evolutionarily decreased their 

predation pressure, but use of these sites carries with it an increased risk of death or 

injury due to falls and rock slides (Johnson 1983).  Characteristically rugged, this species 

has shown in the past the ability to colonize new territory (Hayden 1984) and quickly 

disappear in others (Kuch 1977).       

Native mountain goat populations of the Washington Cascades have decreased over 

the last several decades (Côté & Festa-Bianchet 2003).  Some rough estimates suggest 

declines of as much as 70% over the last forty years (Rice pers. comm.).  In some locales 

that once had dozens of goats, for instance the wintering grounds at Penders Canyon just 

west of the Glacier Peak Wilderness area, recent surveys have found few small bands or 

no goats at all.  These declines have resulted in a major reduction of the permitted hunt.  

Concern over the population decline also prompted studies investigating the reasons 

behind this trend.  Possible explanations for the population decline include: over hunting, 

increased recreational disturbances, increased cougar Felis concolor populations, disease, 

population fragmentation, loss of genetic viability, habitat loss, land use changes 

particularly in wintering and dispersal habitat, climate change and the combination of 

multiple stressors.   

Most previous work on mountain goat habitat has focused on summer months.  

Severe weather and logistical issues have made it problematic to address seasonal 

variation in habitat use in any systematic fashion.  Understanding total year round 

available habitat can assist land-use managers and applied conservation strategies 

designed to assist in mountain goat recovery.  To augment the existing, largely summer, 

anecdotal accounts of mountain goat habitat (Gross et al. 2002), I have developed a year 

round GIS habitat model based on an elevation profile of GPS collared mountain goats. 

The objective of this was to improve the accuracy and precision of previous modeling 

efforts (Johnson & Cassidy 1997), incorporate a GPS bias correction model and to 

designate the largely unknown (Côté and Festa-Bianchet 2003) lower elevation habitats; 
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areas of critical importance to over wintering success and dispersal.  It is these lower 

reaches of habitat that often fall within areas that were most susceptible to direct 

disturbance from anthropogenic sources.  Individual accounts of past human activities 

suggested that such disturbances have lead to extirpation of local populations through 

degradation of over wintering sites.  Even minor disturbances during the winter may 

increase the already high mortality rates mountain goats experience at this time of year.   

My research will contribute to the establishment of an ecological base line by which 

future investigations of mountain goat ecology, population trends and habitat changes 

may be measured. 

 In this chapter, I developed a series of statistical models to identify potential 

mountain goat habitat on the western side of the Cascade Mountain Range in Washington 

State.  These habitat models are based on location data collected over a two-year period 

from 39 GPS collared animals.  These habitat models incorporate the GPS bias correction 

evaluation described in Chapter One.  The resulting maps provide insights on the status of 

potential mountain goat habitat and will contribute to more effective management and 

possible recovery of the species in Washington State. 

.   

Methods 
Capture and Collars 

The Washington Department of Fish and Wildlife captured and administered care 

and supervision of study animals in accordance with American Society of Mammalogists' 

guidelines.  Mountain goats were captured via aerial and ground-based darting with 0.4-

0.5 cc Carfentanil or 50-70 mg xylazine hydrochloride mixed with 0.15-0.25 mg of opiate 

A3080 and reversed with 3.0 cc Naltrexone or 4.0 cc Tolazine, respectively.  The 39 

captured individuals were outfitted with GPS telemetry collars (GPS plus collar v6, 

Vectronic-Aerospace GmbH, Berlin, Germany) scheduled to record a fix every 3 hours 

for a period of 2 years.  Initially, nine of the captured animals' collars recorded fixes on a 

5-hour interval accounting for 10% of the data used in this analysis.   Most of these five-

hour intervals were reprogrammed within 6 months.  Three animals were recaptured and 

re-collared after hardware failure.  Seven collars failed and animals were not re-collard 

prior to two full years worth of data collection.  Six study animal mortalities occurred 
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during the 2-year period, mostly from unknown causes.  Use of data from multiple years 

was intended to reduce the impact of inter-annual variability in habitat selection due to 

weather or unusual behavior.  The winter of 2004-05 had very low snow pack throughout 

most of the Cascades and the winter of 2005-06 had snow packs that were slightly higher 

than the long-term average (USDA 2006) 

Data Analysis  

I created eight-habitat selection models based on elevation ranges employing the 

use-availability design; type II sampling protocol SP-A (Manly et al. 2002, Keating & 

Cherry 2004).  I used weighted logistic regression with Akaike's Information Criteria 

(AIC) to select the most parsimonious model based on a subset of models (Appendix D) 

that were defined using variables thought to be ecologically relevant based on previously 

published studies.  I modeled the probability of a mountain goat location (π) as:   

 

exp (ß0 + ß1 X1 + ß2 X3 +…+ ßp Xp) 

π    =           eqn. 3  

1 + exp (ß0 + ß1 X1 + ß2 X3 +…+ ßp Xp) 

 

The weighting factor accounted for GPS data loss due to topographic and vegetation 

obstructions of satellite signals using the inverse of the GPS PAR developed from 

Chapter One.  I also generated parameter estimates for the selected models without the 

weighting factor to gauge the influence of the bias correction factor.   I calculated cut 

points based on the predicted probability at the convergence of the cumulative number of 

goats points versus the cumulative number of available points and developed 

classification accuracies from these.  I then multiplied the proportion of observations in 

each elevation band during the combined time period of June, July, August and 

September as well as December, January, February, March and April to look at the 

differences in usage of available habitat between these two times of year.   

Assumptions: 

The use-availability design protocols also makes a number of assumptions regarding 

the study design that used measurable attributes of resource use.  The stated assumption, 

"animals have free and equal access to all available locations" (Manly et al. 2002) 
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required consideration and ultimately violating, as is the case in most other habitat 

selection studies utilizing this design.  Mountain goats inhabiting relatively small ranges 

with few, if any, long range dispersals could not have equal access to all locations in the 

entire Cascades mountain range.  To model such a situation, I had to generate available 

locations based upon some reasonable limitation of each individual animals theoretical 

movements.  This however, precluded modeling the entire study area as a whole range for 

the species.  I therefore compromised, and split the available sites into northern and 

southern regions divided along the Interstate 90 corridor.  I-90 also most likely provided a 

substantial obstacle for mountain goats trying to move north or south across the highway.  

This split the data set into 8 subsets, based on the four elevation bands, discussed below, 

in the north and south, which I modeled individually.  Delineation of elevation quartiles 

was made prior to the division of habitat into two regions.  I clustered an equal number of 

random points to mountain goat points based on this north south division.  Splitting the 

analysis into northern and southern subsets reduced the violation of the free and equal 

access assumption and kept the computational loads within reasonable limits 

The repeated measure of individual animals also violated the assumption of 

independence of observations.  I attempted to model the correlation structure of the intra-

cluster structure of GPS fixes of collared animals to account for this.  I wanted to use a 

non-linear mixed model (Appendix C) during model selection to account for this 

clustering of observations by modeling the individual animal as a random effect.  Each 

cluster of individual animal locations was paired with an equal number of available sites.  

After selecting the most parsimonious model, I wanted to use the PROC GEN MOD 

command in SAS to model the correlation structure of the goat fixes with a generalized 

estimating equation (GEE) to generate robust standard errors and modified parameter 

estimates.  The amount of random effects variability in the datasets however, failed to 

achieve quadrate accuracy during model selection and failed to estimate variance with a 

GEE using either auto-regressive or exchangeable correlation structure.  I therefore 

retained the initial parameter estimates generated with ordinary logistic regression for 

habitat modeling while recognizing the inherent flaws with the standard error estimates.              
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GIS habitat predictor variables 

I developed a series of predictor variables to describe the vegetation and topographic 

characteristics of the study area.  For each goat location, I extracted GIS data at one 

spatial scale for inclusion in the habitat analysis, 5,625 m2 (75 m x 75 m square extraction 

window).  I opted to use a 5,625 m2 square extraction window recognizing that over the 

three hour GPS sampling interval, mountain goats likely selected habitats at a scale much 

larger than the finest resolution of available satellite imagery, 625 m2 (25 m x 25 m).  

This scale also encompassed more of the GPS inaccuracies. 

As described in Chapter One, I used the Western Cascades IVMP  (O'neil et al. 2002) 

data layers to create independent vegetation variables.  I created six classes of total 

vegetative cover:  0-20%, 20-40%, 40-60%, 60-80%, 80-100% total cover and areas 

classified as rock and ice.  I broke the QMD data layers into four classes:  No cover, 0-

30cm, 31-60cm and 61-190cm.  The CC layer I classified into three discrete categories: 

0-30%, 30-70% and 71-100%.  I did not select even intervals for the CC due to prior 

definitions of areas with no cover in the QMD layer as specified by the IVMP.  The 

IVMP considers areas with less than 30% CC as areas with a QMD of 0.  This way the 

lowest definition of CC remained consistent with the QMD layer.  I did not include any 

variables representing broadleaf coverage in the analysis.  The final vegetation variables 

used for model creation included the mode and variety of pixels classified by TVC, QMD 

and CC for each square extraction window at the 75 m x 75 m resolution.  I treated the 

vegetation variables as categorical represented by implied dummy variables.   

I derived topographic predictor variables from a 10 m DEM masked to the same 

spatial extent and resampled to the same pixel size as the Western Cascades of 

Washington IVMP data set (25 m).  I created slope and aspect layers with Spatial Analyst 

(ESRI 2004) using the surface tool set.  In the analysis, I used slope as a continuous 

variable directly exported from the GIS.  Considering the circular nature of aspect and the 

possible importance of this as a factor in mountain goat habitat selection, I opted to 

transform aspect into two distinct continuous covariates (Gross et. al. 2002).  I used the 

cosine and sine of aspect, in radians, to test for mountain goats habitat selection for slopes 

along either a north to south or east to west axis.  The ecological rationale for this 
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differentiation had to do with expected differences in thermal cover, forest type and snow 

loading issues.    

The distance to escape terrain data layer involved a few additional calculations.  I 

defined escape terrain as areas with slopes greater than 35° based on an average of 

previously reported values (Fox and Taber 1981; Johnson 1983; Varley 1994; Fox 1989; 

Welch 1990; Gross et al. 2002).  I used a slope layer created at the 10 m resolution and 

reclassified areas with slopes greater than 35° as escape terrain.  I made this distinction 

prior to reclassifying the pixels to the 25 m cell size in order to retain the finest possible 

resolution for defining distance to escape terrain.  The 10 m pixel size is simply too 

computationally intensive to used for the entire model despite having a greater precision.  

I then used the Euclidean distance tool to calculate the distance from the center of each 

25 m pixel in the raster file to the edge of the nearest pixel of escape terrain.  The final 

topographic predictor variables available for model building came from a 75 m x 75 m 

resolution (3 x 3 pixel extraction window) and included mean degree slope, standard 

deviation of slope, elevation (m), sine and cosine of aspect and distance to escape terrain 

(m). 

  

Results 
Initially, I wanted to define seasonal habitats used by mountain goats in the sense of a 

calendar driven definition of seasons.  In other words, goats inhabited a particular region 

during the summer and another region during the winter.  Describing habitat in this 

framework however, failed for a number of reasons.  Some animals changed elevation 

frequently, others much less.  Some animals went high on the slopes of volcanoes while 

others did, or could not, given the geomorphic setting that they occupied.  Comparing 

animals revealed that many may have moved lower at the same time in the fall, but using 

any sort of average date, showed an earlier change for those that started higher (Fig. 9).  

Apparently, some individuals had access to low elevation habitats and others simply did 

not.  

In a biological sense, the whole phenomenon of seasonal differences in habitat 

selection likely hinged on weather patterns, and only made sense in a broad sense because 

of the relationship between season and weather.  The variability of weather within a 
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season and between years created part of the problem.  Natural history of the mountain 

goat suggests that animals respond to weather in their use of different seasonal habitats 

(Johnson 1983).  So, if an animal moved to high ground in March because of "good 

weather" and back down in April during "bad weather", how does fit into the notion of 

calendar driven seasons?  Did the goat use summer habitat in March and winter habitat in 

April?  Or does the "winter" habitat include the March locations?  If the animal went to 

"summer" habitat during the mild spell, then returned to "winter" habitat with the return 

of poor weather then partitioning seasons by date defied efficient data management, 

analysis and ecological relevant partitioning of habitat ranges. 

Instead, I looked at the habitat usage by elevation.  In this way, the habitat modeling 

predicted that when a mountain goat was at any give elevation, its selection of habitats 

may have been based on these different characteristics.  When a goat responded to a 

weather driven phenomenon and moved to a different elevation band, the modeling 

scheme accounted for these intra-seasonal (in a calendar defined) changes in habitat use.  

The final modeling scheme then predicted habitat use across four bands of elevation.  

From a land use managers perspective however, some subjective definitions of seasons 

was required for certain activities like road closures and snow park operation.  I therefore 

used the proportion of mountain goat fixes in each elevation band during "summer" 

(June, July, August, and September) and winter (December, January, February, March 

and April) to look at the differences in habitat availability across a yearly temporal scale. 

I acquired 86,826 GPS locations from the 39 collared mountain goats roughly 

distributed in five regions across the Western Cascades (Fig. 13).  The elevation 

distribution of these points based on GIS elevations, rather then the recorded GPS 

elevations, followed a Gaussian curve (Fig. 10).   The eight data subsets had a range of 

total number of GPS locations from 3,843 in the lowest elevation band in the southern 

Cascades to 17,751 locations in the northern Cascades lowest elevation quartile.  The 4 

northern Cascades elevation bands constituted 51,881 GPS locations while the 4 southern 

subsets tallied 34,945 locations.  In the northern region, each quartile contained locations 

from 21 animals, while the southern region had 11 animals in the 1st quartile, 15 in the 2nd 

and 16 in both the 3rd and 4th quartile.   
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From these GIS extracted elevations I determined the 1st quartile at 1187 m, the 

median at 1455 m and the 3rd quartile at 1670 m.  The upper elevation of the 4th quartile 

was bounded at 3100 m above which no mountain goat locations were recorded.  The 

distribution of goat locations by month within these quartiles follows expected trends of 

seasonal goat movement (Fig. 11).  The use-availability experimental design in habitat 

selection modeling called for a set of random or available points.  I used Hawth's analysis 

tools (Beyer 2004) to generate random points in accordance with the elevation quartiles 

of GIS mountain goats locations.  I bound the lower limit of the first quartile of random 

points with a conservative estimate of 300 m based on the lowest extracted GIS elevation 

of a successful GPS fix from a mountain goat (322 m).  I defined the upper limit of the 4th 

quartile random points at 3100 m based on a conservative buffer around the highest 

observed mountain goat elevation and maintained a 1:1 ratio of individual goat locations 

to random points in each quartile.   

The proportion of use of each elevation band during June, July, August and 

September across the entire study area were as follows:  1st quartile (300-1187 m) = 0.07, 

2nd quartile (1187-1455 m) = 0.21, 3rd quartile (1455-1670 m) = 0.38 and the 4th quartile 

(1670-3100 m) = 0.46.  The proportion of use during December, January, February, 

March and April were: 1st quartile = 0.59, 2nd quartile = 0.41, 3rd quartile = 0.24 and 4th 

quartile = 0.21. 

The most parsimonious models for the eight datasets based on weighted goat  

locations followed similar patterns of variable inclusion.  The global model along with 

two similar models, one excluding the first class of QMD and the other the variety of 

QMD classes in the extraction window, constituted the highest ranked subset of models 

according to the AIC scores (Table 9.0) for all the datasets.  The selected models were 

not the same for the 1st and 4th elevation quartiles across the two regions.  The 3rd and 2nd 

quartiles had the same model parameters in both regions.  All of the models included the 

topographic variables distance to escape terrain, both measures of aspect, elevation, slope 

and standard deviation of slope.  The vegetation variables included in the models varied 

slightly but all included each category of variable; QMD, conifer cover and total 

vegetation cover (Table 9.1-9.8).  Empirical cumulative frequency distributions of 
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topographic predictor variables showed selection by goats for areas closer to distance to 

escape terrain and areas with steeper slope (Fig. 12).       

The cut points between the number of available sites and mountain goat sites were 

lower for the un-weighted habitat map (Table 10).  Based on these cut points, the 

classification accuracies for the weighted maps were slightly better in four of the eight 

datasets and virtually equal in the remaining four.  Area under the receiver operating 

curve (ROC) for each of the eight weighted models exceeded 0.70 (Table 10) based upon 

independent data.  In each elevation band, I reserved 25% of the GPS locations for model 

testing. 

The final habitat map displayed the continuous probability of potential mountain goat 

habitat taking into account the GPS bias correction-weighting factor across the Western 

Cascades Province (Fig. 13).  Taking the average cut point for all quartiles from the 

weighted ( x  = 0.60) and un-weighted map ( x  = 0.58) and reclassifying all probabilities 

as habitat or not indicated a total of 253,638 ha and 249,715 ha of total available 

mountain goat terrain respectively.  This amounted to 9.2% and 9.0% of the total area in 

the Western Cascades of Washington.  Multiplying the predicted potential habitat in each 

elevation band with the proportion of use during "summer" (June, July, August and 

September) as well as "winter" (December, January, February, March and April) altered 

the interpretation of the probability values in the resulting models and provided a 

different impression of available habitat across the year (Fig. 14).        

Discussion 
 The final habitat map showed in one data layer, the predicted probability of the 

landscape being mountain goat habitat taking into account a the GPS bias correction 

weighting scheme developed in Chapter One.  The differentiation of available sites from 

north to south across the mountain range as well as the four elevation quartiles used to 

model habitat created eight distinct models and habitat mapping regions.  These eight 

were mosaiced into one final map interpreted as probability of mountain goat habitat.  

Using the optimal cut points yieled the best overall classification accuracy of mountain 

goat habitat, but adjusting these points based on management objectives will alter the 

maps towards either a more or less conservative estimate of mountain goat habitat.     
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 The final map was consistent with known population distribution patterns of 

mountain goats throughout large portions of the western Cascades.  The regions 

circumnavigating Mt. Baker (Fig. 15) showed high potential habitat in areas known to 

contain 300-400 mountain goats.  The Three Fingers-Whitehorse mountain chain also 

clearly included a substantial amount of habitat (Fig. 16).  The mountain goat habitat in 

this region appeared to lack connectivity to other nearby habitat although there did appear 

to be some connectivity to the southeast.  Even in this direction there is a major drainage 

system that separates the Three Fingers-Whitehorse habitat complex from the Glacier 

Peak habitat complex to the east.  Mount Rainier (Fig. 17) also displayed habitat along its 

slopes with a distinctly more sinuous structure.  The habitat patches appeared longer and 

more narrow than those around Mt. Baker and not as well connected.  This most likely 

stemmed from the fact Mt. Rainer stands much taller then Mt. Baker and consequently 

has habitat patches spread out across greater distances and much further away from one 

another.  In 2005, surveys conducted there estimated a population of at least 120 

mountain goats.  

 The data layer also displayed some high probabilities of potential mountain goat 

habitat in areas with few or no populations.  In particular, the areas east of Mt. Baker 

towards the North Cascades National Park and the Pickett Range have some of the 

densest and most obvious patches of habitat (Fig. 18).  This region however, does not 

historically support a large population of mountain goats.  Looking at the differences in 

seasonal habitat maps (Fig. 14) suggested that a lot of this habitat might be available 

during the summer with fewer habitat patches and poorer connectivity in the winter.   The 

central Cascades also have quite a bit of habitat but currently do not support strong 

populations of mountain goats possibly due to large harvest in the past (Fig. 19).  The 

southern Cascades, from Goat Rocks Wilderness Area to Mt. Adams and Mt. St. Helens 

(Fig. 20), showed more disjointed and not nearly as much high quality habitat as the 

Northern Cascades although they do support mountain goat populations.  There was one 

instance of a long distance dispersal of a juvenile male mountain goat from the Goat 

Rocks Wilderness area to Mt. Adams across large areas of low lying and low predicted 

probability habitat.         
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The trends in elevation use follow expected ecological patterns.  There was high use 

of the fourth elevation quartile during June, July and August after a quick transition up 

from the peak usage in lower quartiles.  Downward movements progressed more slowly 

at the end of the summer and fall months.  The lowest quartile had the highest usage 

during the first three and last two months of the year.  This fit with expected patterns of 

elevation changes across seasons and supported partitioning the data and modeling 

habitat by elevation quartiles to capture seasonal trends.  This was also how I defined 

what months to include in the proportion of use factor for creating winter and summer 

models.     

Weighting each of the goat location on the basis of GPS PAR did not appear to have 

much effect on the habitat models. The slightly lower cut points developed with models 

not using the weighting factor to offset GPS PAR resulted in slightly lower classification 

accuracies across four of the eight datasets.  The difference in cut points and accuracies 

however, was negligible in these four models.  The total area of potential habitat 

delineated by each set of models was similar.  The greater total area of habitat based on 

the weighted model's mean cut points suggested the bias correction factor accounted for 

some habitat's where detection of study animals may have been low.  

The small difference between the weighted and un-weighted models may have 

resulted from at least two different factors.  First, the predictive power of the GPS bias 

correction model from Chapter One was comparable to that reported in other studies 

(Rempel et al. 1995; Deckert & Bolstad 1996; Edenius 1997; Dussault et al. 1999; Gamo 

& Rumble 2000; Licoppe 2001; Rodgers 2001; D’Eon et al. 2002; Taylor 2002; Di Orio 

et al. 2003; Frair et al. 2004; Cain et al. 2005; Sager 2005) but it was still relatively low.   

Secondly, the effect of bias in GPS PAR may have been minimized because I 

developed separate habitat models for each elevation band.  Had I developed a single 

model using location data from all elevation bands, the effect of bias in GPS PAR may 

have resulted in a larger difference between weighted and un-weighted habitat models.  

By modeling each elevation band separately and considering the effects of vegetation on 

satellite signal reception (Tables 7 & 8), there likely existed a correlation between the 

amount of canopy cover, GPS PAR and elevation quartile.  The lowest quartile likely had 

a consistent range of predicted GPS PAR, as would the highest.  If this range of GPS 
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PAR values, and consequently weights in the habitat model, were small enough within 

each quartile, the factor by which the habitat models were adjusted would essentially be 

constant.  If the habitat models were developed as a whole with all the GPS fixes from 

mountain goats in one data set, the range of GPS PAR values across all elevations would 

increase and consequently add greater emphasis to areas with low predicted GPS PAR in 

the habitat modeling process.          

In both the north and south, the classification accuracy and area under the ROC 

improved in lower elevation quartiles.  This was a counterintuitive result.  I expected the 

higher elevation habitats to be clearly delineated while the lower elevation habitats would 

be more difficult to define.  This might have been a consequence of the lower elevation 

quartiles classifying more terrain as habitat or there being a more distinct difference 

between habitat and non-habitat in these areas.  The higher elevation habitats may have 

lower classification accuracies due to the availability of much more moderate habitat not 

necessarily used when goats at high elevations may be selecting the most precipitous 

terrain.  There also may have been more contaminated controls (Keating & Cherry 2004) 

at the higher elevations than at the lower elevation bands.             

The habitat models showed similar patterns of variable inclusion across all eight 

datasets.  In each model, all the topographic predictor variables were retained as well as 

some measure of all the three types of vegetation predictor variables.  The most 

parsimonious models were the global model or the global model with the exclusion of 

one variable.  These models excluded the first QMD class or the variety of QMD classes 

found in the 75 m x 75 m square extraction window.   

 Examining the results from north to south, the variable representing areas of rock and 

ice (Table 9.1-9.8 tvc6) shows a strong difference between these regions.  In the southern 

models, all the parameter estimates have negative values while the northern regions all 

show positive estimates.  Distance to escape terrain also had negative parameter estimates 

in all but one data set, the first quartile of the southern region (Table 9.5).  This suggested 

that animals at the lowest observed elevations in this region may have shown some 

selection for habitats away from slopes greater then 35°.  This might reflect some long 

distance dispersal movements recorded in that region, varying topographic features, or 

simply a failure of the model to capture the random effects error structure with properly 
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robust confidence intervals.  It is also possible that most of the points in this data set were 

close to escape terrain with few actual points in escape terrain.     

The violation of certain assumptions regarding the habitat modeling process and 

choices therein has created some unavoidable error in modeling methodology.  The lack 

of enough variation, or small random effects size, resulted in the choice of ordinary 

logistic regression that failed to account for the lack of independence among data points 

acquired from a single study animal.  The use of the PROC GLIMMIX command in SAS 

may provide the ability to correctly account for these random effects and lack of 

independence in future modeling efforts.  The largest discrepancy between a model 

accounting for random effects and ordinary logistic regression was in the standard error 

and resulting confidence intervals.  The final habitat models (Table 9.1-9.8) have narrow 

confidence intervals because of the failure to model such small random effects.  

Parameter estimates may have varied slightly as well as some Chi-squared test statistics if 

the auto-correlation structure of the repeated measurements on individual goats was 

accounted for in the statistical modeling.   

 The final habitat maps generated in this analysis lay the groundwork for a more 

detailed assessment of available mountain goat habitat in the Western Cascades.  Future 

work should look at the spatial orientation and connectivity of habitat patches.  

Identifying the largest patches of contiguous habitat would help in evaluating the 

probable success of a relocation effort and establishment of viable populations with 

suitable access to terrain and other animals.   

 To get a full picture of the habitat available to the entire Cascade population of 

mountain goats the Eastern Cascades of Washington also need a similar habitat model.  

Based on the relatively small influence of the weighting factor on the Western Cascades 

where I expected much lower GPS PAR, I would seriously question the merits of 

incorporating the weighting factor in the eastern habitat models.  I expect much higher 

rates of GPS PAR on the east side and consequently less data loss from collared wildlife.  

A more prudent option to account for GPS bias might be to develop some heuristic 

algorithms to estimate individual missed fixes based on movement parameters.  East side 

habitat mapping should also carefully consider the lack of independence between 

successive fixes.  As mentioned before, the GLIMMIX procedure may handle a mixed 
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model structure more easily.  There is no need to run an initial logistic regression and 

then a non-linear mixed model as in the macro I used for GPS PAR (Appendix B).  The 

GLIMMIX command should handle everything in one step.  Alternatively, considering a 

different statistical design may account for the lack of independence by modeling each 

animal individually and extrapolating results to the entire range based on random 

available sites with spatial variables derived from polygons matching the animal's home 

range.        

In my opinion, the results, the amount of fieldwork, the required methodological 

development and data analysis for developing the bias correction model incorporated into 

the mountain goat habitat map show the reasonable limitation expected from this type of 

research.  The results suggested microsite features heavily influenced GPS PAR.  The 

weighted and un-weighted habitat maps appeared almost identical, although a more 

thorough analysis might provide greater insight to the degree of similarity.  The 

consequences of partitioning the habitat modeling by elevation bands likely decreased the 

relative influence of the correction factor.  In addition, the applied nature of the habitat 

map with adjustable cut points based on management objectives may render the 

weighting factor a moot point with even a slight shift in cut points.  Animal behavior may 

also have contributed to unexplainable GPS PAR from collared mountain goats.    

Nonetheless, the results have shown the advantages and improvements offered by GPS 

wildlife telemetry over traditional VHF-tracking and the ability to develop fine scale 

habitat maps based in a GIS.          
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orth   Q1   Q2   Q3   

          

              

             

             

              

outh   Q1   Q2   Q3   Q  

          

              

              

             

N Q4  

model K AIC delta weights AIC delta weights AIC delta weights AIC delta weights

global 20 13944 0 1.00 18353 2 0.27 19156 1 0.37 13017 2 0.27

global w/o qmd1

Tables 
Table 9.0:  The models, number of parameters (K), AIC scores, delta AIC scores and AIC weights of the highest ranked models for 

the eight datasets used to construct the predicted potential mountain goat habitat maps for each elevation quartile (Q1,Q2,Q3 &Q4). 

 19 13985 41 .00 18351 0 0.73 19163 8 0.01 13029 14 0.00

global w/o qmd variety 19 14004 58 .00 18372 21 0.00 19155 0 0.62 13015 0 0.73

S 4 

model K AIC delta weights AIC delta weights AIC delta weights AIC delta weights

global 20 1538 1 0.37 5276 1 0.38 8677 1 0.37 21595 0 1.00

global w/o qmd1 19 1537 0 0.62 5275 0 0.62 8685 9 0.01 21620 25 0.00

global w/o qmd variety 19 1546 9 0.01 5315 40 0.00 8676 0 0.62 21610 15 0.00

 

 

 



Table 9.1-9.8:  The most parsimonious habitat models based on the lowest AIC scores in 

Table 9.0 for the eight datasets used to model predicted potential mountain goat habitat 

across the western Cascades of WA, divided by elevation quartiles and a northern (Table 

9.1-9.4) and southern region (Table 9.5-9.8) along I-90. 

 

NORTH: 

Table 9.1:  First Quartile (Lowest Elevation, 300 m - 1187 m) 

                                                   Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq 
 

 Intercept            1       -8.8672      0.2129    -9.2846      -8.4499     1734.24   <.0001 

 aspcos               1     -0.9412       0.0362     -1.0121      -0.8702      675.96      <.0001 

 aspsin               1      -0.4560       0.0331      -0.5208      -0.3912     190.18         <.0001 

 elev                1       0.0033       0.0001       0.0031       0.0035      805.80        <.0001 

 slope                1       0.1131       0.0033       0.1067       0.1196     1179.17         <.0001 

 slope_stdv         1       0.1562       0.0079       0.1408       0.1717      391.41       <.0001 

 d2et                 1      -0.0095       0.0010      -0.0114      -0.0075       90.11         <.0001 

 tvc2                 1       0.1816       0.1207      -0.0550       0.4182    2.26         0.1326 

 tvc3                 1       0.1071       0.1085      -0.1055       0.3198            0.97        0.3235 

 tvc4                 1      -0.5672       0.1092      -0.7812      -0.3533       27.00         <.0001 

 tvc5                 1      -1.3474       0.1185      -1.5796      -1.1152      129.35      <.0001 

 tvc6 (rock&ice)  1       1.3612       0.3047       0.7639      1.9585       19.95         <.0001 

 tvc_variety   1       0.7106      0.0307       0.6504       0.7708      535.28        <.0001 

 qmd1                 1      -0.6072       0.0938      -0.7910      -0.4234    41.93         <.0001 

 qmd2                 1      -0.2758       0.0951      -0.4623      -0.0893        8.40         0.0037 

 qmd3                 1      -0.5749       0.0867      -0.7448      -0.4049       43.95       <.0001 

 qmd_variety        1       0.2630       0.0304       0.2034       0.3226       74.77         <.0001 

 cc2                 1       0.5515       0.0783       0.3981       0.7049       49.66         <.0001 

 cc3                 1       0.5146       0.0938       0.3307       0.6985       30.08         <.0001 

 cc_variety        1      -0.1001       0.0398      -0.1780      -0.0222        6.34         0.0118 
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NORTH: 

Table 9.2:  Second Quartile (1187 m - 1145 m) 
                     Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq 

 

 Intercept 1      -0.8658       0.3472      -1.5462    -0.1853        6.22         0.0126 

 aspcos              1      -0.8536       0.0298      -0.9120      -0.7953      821.43         <.0001 

 aspsin               1      -0.3669       0.0283      -0.4224      -0.3114      167.81         <.0001 

 elev               1      -0.0014       0.0002      -0.0019      -0.0010       38.54         <.0001 

 slope               1       0.0508       0.0029      0.0451       0.0565      304.95         <.0001 

 slope_stdv         1       0.0764       0.0062       0.0643       0.0885      153.00         <.0001 

 d2et                1      -0.0170       0.0011      -0.0192      -0.0149      233.16         <.0001 

 tvc2             1       1.1969       0.0851       1.0302       1.3637     197.90         <.0001 

 tvc3                 1       0.2065       0.0774       0.0548       0.3582        7.12         0.0076 

 tvc4               1      -0.1514       0.0794      -0.3071       0.0042        3.64         0.0566 

 tvc5               1      -0.9400       0.0842      -1.1051      -0.7749      124.56         <.0001 

 tvc6 (rock&ice)  1       2.3258       0.1123       2.1057       2.5460      428.69         <.0001 

 tvc_variety   1       0.4480       0.0238       0.4014       0.4946      355.24         <.0001 

 qmd2              1      -0.4754       0.0618      -0.5966      -0.3543       59.14         <.0001 

 qmd3                1      -1.0003       0.0546      -1.1074      -0.8932      335.32        <.0001 

 qmd_variety      1       0.1449       0.0275       0.0910       0.1989       27.71         <.0001 

 cc2               1       0.2410       0.0596       0.1241       0.3579       16.33         <.0001 

 cc3               1       0.4502       0.0725       0.3082       0.5923       38.60         <.0001 

 cc_variety        1      -0.1994       0.0336     - 0.2653      -0.1335       35.21         <.0001 
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NORTH: 

Table 9.3:  Third Quartile (1145 m - 1670 m) 
                                                        Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq 

 

 Intercept          1       0.2077       0.4687      -0.7110       1.1264 0.20         0.6577 

 aspcos              1      -0.6919       0.0302      -0.7511      -0.6327      524.32         <.0001 

 aspsin               1      -0.3439       0.0269      -0.3966      -0.2912      163.62         <.0001 

 elev                 1      -0.0018       0.0003      -0.0023      -0.0012       38.54         <.0001 

 slope                1       0.0557       0.0026       0.0506       0.0607      463.72         <.0001 

 slope_stdv       1       0.0788       0.0059       0.0673       0.0902      181.26         <.0001 

 d2et                1      -0.0033       0.0008      -0.0048      -0.0018       19.40         <.0001 

 tvc2             1       0.7059       0.0631       0.5822       0.8296      125.08         <.0001 

 tvc3               1       0.3897       0.0620       0.2682      0.5113       39.49         <.0001 

 tvc4               1      -0.0473       0.0695      -0.1835       0.0888        0.46         0.4956 

 tvc5                1      -0.5504       0.0824      -0.7119      -0.3889       44.60         <.0001 

 tvc6 (rock&ice)  1       0.9908       0.0721       0.8494       1.1322      188.71         <.0001 

 tvc_variety   1       0.1255       0.0217       0.0829       0.1680       33.44         <.0001 

 qmd1              1      -0.1845       0.0778      -0.3370      -0.0320        5.62         0.0178 

 qmd2               1      -1.1555       0.1006      -1.3526      -0.9584      132.03         <.0001 

 qmd3                1      -1.1734       0.0833      -1.3366      -1.0103      198.65         <.0001 

 cc2                1      -0.1561       0.0536      -0.2611      -0.0511        8.49         0.0036 

 cc3               1      -0.0794       0.0710      -0.2185       0.0596        1.25         0.2629 

 cc_variety         1      -0.0452       0.0325      -0.1089       0.0184        1.94         0.1638 
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NORTH: 

Table 9.4:  Fourth Quartile (Highest Elevation, 1670 m - 3100 m) 
                                                        Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                     

    

 Intercept          1       7.2777       0.3223       6.6460       7.9095      509.83         <.0001 

 aspcos             1      -0.9675       0.0398      -1.0454      -0.8895      592.00        <.0001 

 aspsin               1      -0.2833       0.0326      -0.3471      -0.2195       75.72         <.0001 

 elev               1      -0.0045       0.0002      -0.0048      -0.0042      840.12         <.0001 

 slope              1      0.0053       0.0030      -0.0005       0.0111        3.16         0.0756 

 slope_stdv         1       0.0456       0.0068       0.0322       0.0590       44.44         <.0001 

 d2et               1      -0.0086       0.0009      -0.0103      -0.0068       89.05         <.0001 

 tvc2                1       0.7568       0.0675       0.6246       0.8890      125.86         <.0001 

 tvc3                1       0.6767       0.0729       0.5339       0.8195       86.23         <.0001 

 tvc4                1       0.0058       0.0958      -0.1818       0.1935        0.00         0.9513 

 tvc5               1      -0.8941       0.1524      -1.1928      -0.5953       34.40         <.0001 

 tvc6 (rock&ice) 1       0.7940       0.0646       0.6673       0.9207      150.84         <.0001 

 tvc_variety   1      -0.0376       0.0276      -0.0917       0.0165        1.85         0.1736 

 qmd1              1      -0.5551       0.1480      -0.8452      -0.2650       14.06         0.0002 

 qmd2                1      -2.1120       0.2978      -2.6957      -1.5283       50.29         <.0001 

 qmd3              1      -1.8249       0.2121      -2.2406      -1.4091       74.02         <.0001 

 cc2              1       0.1039       0.0698      -0.0329       0.2407        2.21         0.1368 

 cc3                1       0.4817       0.1019       0.2820       0.6814       22.34         <.0001 

 cc_variety         1       0.0697       0.0424      -0.0133       0.1527        2.71         0.1000 
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SOUTH: 

Table 9.5:  First Quartile (Lowest Elevation, 300 m - 1187 m) 
                                                        Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square         Pr >ChiSq                                     

  

Intercept           1     -18.5027       0.7409     -19.9548     -17.0506      623.69 <.0001            

 aspcos              1     -0.4339      0.1154      -0.6602      -0.2076       14.13         0.0002 

 aspsin               1     -0.1748       0.0957      -0.3624       0.0127        3.34         0.0677 

 elev                 1      0.0074       0.0005       0.0065       0.0083      258.35         <.0001 

 slope                1      0.2501       0.0099       0.2307       0.2696      637.84         <.0001 

 slope_stdv          1      0.0805       0.0242       0.0331       0.1280      11.05         0.0009 

 d2et                 1      0.0009       0.0008      -0.0006       0.0024        1.41         0.2350 

 ric2                 1      0.6018       0.4664      -0.3122       1.5159        1.67         0.1969 

 ric3                 1      0.2663       0.3925      -0.5030       1.0356        0.46         0.4975 

 ric4                 1     -0.2836       0.3583      -0.9859       0.4187        0.63         0.4287 

 ric5                 1      0.1078       0.3636      -0.6048       0.8205        0.09         0.7668 

 ric6 (rock&ice)   1    -21.7808     34232.09     -67115.4     67071.88        0.00         0.9995 

 rockice_variety   1      0.3230       0.1030       0.1211       0.5250        9.83         0.0017 

 qmd2                 1     -0.2244       0.2012      -0.6187       0.1699        1.24         0.2647 

 qmd3                 1     -0.0861       0.2052      -0.4883       0.3162        0.18        0.6750 

 qmd_variety      1      0.3518       0.1011       0.1536       0.5499       12.11         0.0005 

 con2                 1      0.0431       0.2628      -0.4720       0.5582        0.03         0.8697 

con3                 1      0.5695      0.3219      -0.0614       1.2004        3.13         0.0769 

con_variety        1      0.4532       0.1300       0.1985       0.7079        12.16         0.0005
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SOUTH: 

Table 9.6:  Second Quartile (1187 m - 1145 m) 
                                                         Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                     

 

 Intercept            1     -16.4693       0.6912     -17.8241     -15.1145      567.68         <.0001 

 aspcos               1      -0.1952       0.0601      -0.3131      -0.0773       10.53         0.0012 

 aspsin            1      -0.2791       0.0499      -0.3770      -0.1812       31.22         <.0001 

 elev                 1       0.0053       0.0005       0.0044       0.0062     136.78         <.0001 

 slope             1       0.2412       0.0063       0.2288       0.2537     1449.08         <.0001 

 slope_stdv           1       0.1095       0.0115       0.0870       0.1319       91.20         <.0001 

 d2et               1      -0.0014       0.0011      -0.0036       0.0008        1.67         0.1967 

 tvc2              1       0.0250       0.2084      -0.3834       0.4335        0.01         0.9044 

 tvc3              1      -0.4009       0.1729      -0.7398      -0.0620       5.38         0.0204 

 tvc4              1      -0.9617       0.1824      -1.3192      -0.6042       27.80         <.0001 

 tvc5               1      -0.8973       0.1850      -1.2599      -0.5346       23.52         <.0001 

 tvc6 (rock&ice) 1      -1.4221       0.5421      -2.4846      -0.3597        6.88         0.0087 

 tvc_variety   1       0.1729       0.0507       0.0736       0.2722       11.63         0.0006 

 qmd2               1      -0.6154       0.1095      -0.8299      -0.4008       31.60         <.0001 

 qmd3              1      -0.4339       0.1024      -0.6346      -0.2333       17.97         <.0001 

 qmd_variety       1      0.3757       0.0532       0.2714       0.4800       49.88         <.0001 

 cc2               1       0.1840       0.1569      -0.1236       0.4915        1.37         0.2410 

 cc3               1       0.1727       0.1818      -0.1837       0.5290        0.90         0.3422 

 cc_variety         1       0.3035       0.0647       0.1767       0.4302       22.02         <.0001 
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SOUTH: 

Table 9.7:  Third Quartile (1145 m - 1670 m) 
                                                         Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                    

 

 Intercept           1      -7.1235       0.7644      -8.6218      -5.6252       86.83         <.0001 

 aspcos             1      -0.0911       0.0511      -0.1911       0.0090        3.18         0.0745 

 aspsin           1      -0.4833       0.0404      -0.5624      -0.4042      143.36         <.0001 

 elev               1       0.0019       0.0004       0.0010       0.0028       18.23         <.0001 

 slope              1       0.1324       0.0050       0.1226       0.1423      694.85         <.0001 

 slope_stdv         1       0.1364       0.0088       0.1192       0.1536      242.52         <.0001 

 d2et              1      -0.0108       0.0015      -0.0137      -0.0080       55.67         <.0001 

 tvc2              1      -0.9992       0.1358      -1.2653      -0.7330       54.13         <.0001 

 tvc3             1      -1.5048       0.1220      -1.7439      -1.2656      152.09         <.0001 

 tvc4               1      -1.5628       0.1317      -1.8209      -1.3046      140.76         <.0001 

 tvc5              1      -1.7165       0.1435      -1.9976     -1.4353      143.17         <.0001 

 tvc6 (rock&ice) 1      -4.4578       0.4904      -5.4190      -3.4966       82.63         <.0001 

 tvc_variety   1       0.2342       0.0395       0.1568       0.3116       35.17         <.0001 

 qmd1                 1      -0.3687       0.1311      -0.6257      -0.1118        7.91         0.0049 

 qmd2             1      -0.5861       0.1288      -0.8386      -0.3335       20.69         <.0001 

 qmd3              1      -0.5310       0.1212      -0.7686      -0.2935       19.20         <.0001 

 cc2                1      -0.1024      0.1174      -0.3325       0.1277        0.76         0.3833 

 cc3                1      -0.0691       0.1385      -0.3405       0.2023       0.25         0.6177 

 cc_variety       1       0.3110       0.0512       0.2106       0.4113      36.87         <.0001 
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SOUTH: 

Table 9.8:  Fourth Quartile (Highest Elevation, 1670 m - 3100 m) 
                                                          Standard             Wald 95%                    Chi- 

 Parameter        DF    Estimate          Error           Confidence Limits            Square        Pr > ChiSq                                    

 

 Intercept          1      -1.3808       0.2082      -1.7890      -0.9727       43.97         <.0001 

 aspcos             1      -0.2119       0.0294      -0.2696      -0.1542       51.82         <.0001 

 aspsin             1      -0.4271       0.0248      -0.4757      -0.3786      297.45        <.0001 

 elev                 1      -0.0004       0.0001      -0.0005      -0.0002       15.00         0.0001 

 slope               1       0.0683       0.0023       0.0638       0.0728      881.86         <.0001 

 slope_stdv         1       0.0710       0.0055       0.0603       0.0818      167.47         <.0001 

 d2et               1     -0.0029       0.0003      -0.0035      -0.0023      101.10        <.0001 

 tvc2               1      -0.8212       0.0756      -0.9694      -0.6731      118.04         <.0001 

 tvc3                1      -1.0508       0.0663      -1.1807      -0.9209      251.24         <.0001 

 tvc4               1      -1.2842       0.0792      -1.4393      -1.1290      263.22         <.0001 

 tvc5               1     -1.5925       0.0959      -1.7804      -1.4045      275.74         <.0001 

 tvc6 (rock&ice)  1      -1.2844       0.0601      -1.4022      -1.1667      457.26         <.0001 

 tvc_variety   1       0.1668       0.0211       0.1255       0.2081       62.71         <.0001 

 qmd1                1      -0.4918       0.1016      -0.6909      -0.2927       23.44         <.0001 

 qmd2                 1      -0.4929       0.0995      -0.6880      -0.2979       24.53         <.0001 

 qmd3              1      -0.2592       0.0837      -0.4233      -0.0952        9.59         0.0020 

 qmd_variety        1          0.1410          0.0304           0.0814           0.2006        21.47        <.0001 
 cc2                1      -0.0489      0.0660      -0.1782       0.0805        0.55         0.4590 

 cc3                1      0.1502       0.0903      -0.0267       0.3271       2.77        0.0960 

 cc_variety       1       0.1540       0.0349       0.0857       0.2223      19.53         <.0001 
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Table 10:  Area under the receiver operating curve (AUC), cut points and accuracy of 

correctly classified independent mountain goat locations for the mountain goat habitat 

models.  Datasets were divided into four elevation bands and two geographic regions, 

north and south Cascades of Washington, with and without a weighting factor 

incorporated to account for GPS bias.  The AUC values were the same for both weighted 

and un-weighted models.    

 

Cascades Elevation     Weighted  Un-weighted  

Region  Quartile         AUC cut point accuracy cut point       accuracy 

North  1st  0.96 0.63  0.89  0.60  0.89 

  2nd  0.88 0.60  0.80  0.56  0.79 

  3rd  0.82 0.56  0.75  0.55  0.74 

  4th  0.77 0.54  0.69  0.53  0.69 

South  1st  0.99 0.60  0.95  0.59  0.95 

  2nd  0.97 0.63  0.93  0.59  0.92 

  3rd  0.94 0.64  0.87  0.62  0.87 

  4th  0.84 0.54  0.77  0.54  0.76 
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Fig. 9:  Proportional elevation shifts in mountain goats from different locations showing 

the complexities associated with defining calendar-driven mountain goat seasons based 

on elevation movements.  Y-axis represents changes in elevation greater than 500 m in 

terms of the portion of the move across the animals entire range of observed elevations.      
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Fig. 10:  Histogram of all GIS-derived mountain goat elevations from GPS points 

showing a Gaussian distribution and the range of observed values (Frequency = 

Percentage of Fixes).  

 
Fig. 11:  Distribution of mountain goat locations acquired by month within each elevation 

quartile:  1st (300-1187 m), 2nd(1187-1455 m), 3rd(1455-1670 m) & 4th(1670-3000 m).  

The total number of fixes for the 1st through 4th quartile was, 21,598, 21,633, 21,609 and 

21,988 respectively.   
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Fig. 12:  Empirical cumulative frequency distributions of available (dotted) vs. goat 

locations (solid) for derived topographic predictor variables suggesting selection for areas 

closer to escape terrain and steeper slopes.   
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Fig. 13:  Map showing continuous data layer of predicted potential mountain goat habitat 

for the Western Cascades of Washington based on elevation quartiles from the northern 

and southern halves of the Cascades, split along I-90, based on data from 39 GPS collared 

animals.  
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Fig. 14:  Seasonal habitat maps of potential mountain goat habitat based on subjective 

summer (June, July, August and September) and winter (December, January, February, 

March and April) delineation of seasons, created by taking the predicted potential habitat 

in each elevation band multiplied by the proportion of use during that time frame.  
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Fig. 15:  Close up view of predicted potential mountain goat habitat in the vicinity of Mt. Baker, WA showing fairly contiguous 

habitat patches around the mountain.  Blue designates high predicted probability while red denotes low predicted probability of 

mountain goat habitat.  
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Fig. 16:  Close up view of predicted potential mountain goat habitat around the Three Fingers-Whitehorse mountain complex (to the 

right) and of Glacier Peak, WA (to the left) showing a distinct isolation of the area from more easterly habitats.  Blue designates high 

predicted probability while red denotes low.  
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Fig. 17:  Predicted potential mountain goat habitat around Mt. Rainier, WA showing a more striated pattern of habitat patches then 

those around Mt. Baker.  Blue designates high predicted probability while red denotes low, with the grey summit falling above the 

highest observed mountain goat elevations and consequently outside of the analysis.    
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Fig. 18:  Close up view of the Pickett Range, east of Mt. Baker, WA, encompassing the North Cascade National Park showing some of 

the highest quality, most well-connected and densest predicted habitat despite having few observed mountain goats.  The Canadian 

border forms the northern border of the image. 
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Fig. 19:  Close up view of Garfield Mt. in the middle Cascades, a region with lots of predicted potential habitat but few mountain 

goats.  Blue designates high predicted probability while red denotes low.  
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Fig. 20:  Close up view of the southern Cascades depicting a more disjointed landscape of mountain goat habitat although supporting 

known populations of animals.  Goat Rocks Wilderness area appears in the upper right, Mt. Adams (with marginal habitat at best) in 

the lower right and Mt. St. Helens in the lower left.  Blue designates high predicted probability while red denotes low. 
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Appendix 
A.  Sky Visibility  

   The sky visibility algorithm performed a discrete approximation of a hemispherical 

integral and worked with a large DEM (Bill Huber, pers. comm.).  The algorithm 

generated a series of hillshade grids, each with the sun at a different elevation and 

azimuth angle.  For a given sun elevation and azimuth, the hillshade function determined 

whether each grid cell fell in full sun or shadow.  A final output grid consisted of a 

weighted tally of the number of “sun hits” each grid cell received.  This weighted tally 

expressed the percentage of the maximum possible number of “sun hits” (the number of 

azimuth angles times the number of elevation angles).  Each of the initial grids received 

weighting using the cosine of the elevation angle.  This weighting corrected for the fact 

that low elevation angles represented a greater section of sky than high elevation angles.  

The net result quantified the percentage of the sky visible from each grid cell, based on 

surrounding topography.  Unobstructed sky provided access to more satellites; 

topographic obstructions in one or more portions of the sky blocked access    
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B. GPS PAR models  

This is a list of the a prior selected models used for testing GPS PAR based on ecological 

expectations based on the variable nomenclature found in Table 5. 

 

asp elev slp sv bc2 bc3 bc4 qmd2 qmd3 cc2 cc3 tvc2 tvc3 

  

asp slp elev qmd2 qmd3 

  

asp slp elev bc2 bc3  

                  

asp slp elev sv cc2 cc3 

  

asp slp elev tvc2 tvc3  

                  

asp elev slp sv qmd3 cc3 tvc3  

                  

qmd2 qmd3 cc2 cc3 tvc2 tvc3 bc2 bc3 bc4  

                 

elev slp sv asp  

                  

slp cc3 qmd3 tvc3 

  

asp 

                  

sv 

 

elev 

                  

slp  

 

qmd2 qmd3  
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cc2 cc3  

                  

tvc2 tvc3  

 

bc2 bc3 bc4  

                  

asp cc2 cc3 

                  

asp slp elev qmd2 

                  

asp tvc2 tvc3  

                  

asp tvc3 qmd3  

               

asp elev slp sv bc2 bc3 bc4 qmd2 qmd3 cc2 cc3 tvc2 tvc3  

                 

asp elev slp sv tvc2 tvc3 
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C. Non-linear mixed macro 

This is the macro written for implementation in SAS that executed the non-linear mixed 

modeling scheme for the GPS PAR model.  The model executes an ordinary logistic 

regression to generate initial parameter estimates prior to using the non-linear modeling.  

This macro was used during model selection to account for the random effects error 

structure due to the repeated measure of GPS PAR at each sample site. 

 

%macro Logisticmixed(data1,data2,depvar,nvars,nparm,variables,parms); 

title "Initial logistic fit with covariates:&variables"; 

proc logistic data=&data1 descending outest=betas; 

    model &depvar= &variables /aggregate=(cluster) scale=none rsquare lackfit; 

 ods output FitStatistics=Fitstat LackFitChiSq=HLtest RSquare=r2; 

*GoodnessOfFit=gof; 

data betas; set betas;  

array x{&nparm} intercept &variables; 

array b{&nparm} &parms; 

 do i=1 to &nparm; 

    b{i}=x{i}; 

   end; 

 keep &parms; 

 

proc nlmixed data=&data1 technique=nrridg maxiter=500 maxfunc=500; 

parms s=1 / data=&data2; 

 array b{&nparm} &parms; 

 array x{&nvars} &variables; 

 eta=ranvar+b{1}; 

 do i=1 to &nvars ; 

   eta=eta+b{i+1}*x{i}; 

   end; 

  model &depvar ~ binary(1-1/exp(eta)); 

  random  ranvar ~ normal(0,s*s) subject=cluster; 
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  ods output FitStatistics=FitStatistics; 

   

data mixedresult; 

   set FitStatistics; 

   length variables $ 50; 

   keep AICc variables; 

   if Descr= "AICC (smaller is better)" then do; 

       AICc=Value; 

    variables= "&variables"; 

    output; 

  end; 

   title "subset:&variables"; 

   data summary; set summary mixedresult Fitstat HLtest r2 ; 

   run; 

 

%mend logisticmixed: 
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D.  Habitat models 

This is the list of a prior selected models used for testing based upon ecological 

expectations: 

 

d2et  

                  

slope  

                  

slope slope_stdv  

                  

elev  

           

elev elev_stdv  

                                

aspcos  

                                 

aspsin  

                  

aspsin aspcos  

                                

tvc2 tvc3 tvc4 tvc5 tvc6  

                                

tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety  

                               

cc2 cc3            

                 

cc2 cc3 cc_variety  

                 

qmd1 qmd2 qmd3  

              

qmd1 qmd2 qmd3 qmd_variety  
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aspcos aspsin elev elev_stdv slope slope_stdv d2et tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety 

qmd1 qmd2 qmd3 qmd_variety cc2 cc3 cc_variety  

                  

aspcos aspsin elev slope d2et tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety qmd1 qmd2 qmd3 

qmd_variety cc2 cc3 cc_variety  

                  

tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety qmd1 qmd2 qmd3 qmd_variety cc2 cc3 cc_variety  

 

qmd1 qmd2 qmd3 cc2 cc3 tvc2 tvc3 tvc4 tvc5 tvc6  

                  

tvc_variety cc_variety qmd_variety  

                  

aspcos aspsin elev elev_stdv slope slope_stdv d2et 

                  

aspcos aspsin elev slope d2et 

                  

d2et slope slope_stdv elev_stdv 

 

d2et slope 

                  

d2et slope slope_stdv 

                  

d2et slope tvc6 

                  

slope tvc2 tvc3 tvc4 tvc5 tvc6 

 

d2et slope cc2 cc3 

 

d2et slope qmd1 qmd2 qmd3 
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d2et slope tvc6 aspsin aspcos 

 

d2et slope tvc6 cc_variety qmd_variety 

                  

d2et slope aspcos tvc2 tvc3 tvc4 tvc5 tvc6 cc_variety cc2 cc3 qmd_variety 

                  

d2et slope aspcos aspsin elev_stdv tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety cc_variety cc2 

cc3 qmd1 qmd2 qmd3 qmd_variety 

                  

d2et slope aspcos aspsin elev_stdv tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety cc_variety cc2 

cc3 qmd_variety 

                  

aspsin tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety cc_variety cc2 cc3 qmd1 qmd2 qmd3 

qmd_variety 

 

aspcos aspsin elev elev_stdv slope slope_stdv d2et tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety 

qmd1 qmd2 qmd3 cc2 cc3 cc_variety  

 

aspcos aspsin elev elev_stdv slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd1 qmd3 

cc2 cc3  

                  

aspcos aspsin elev elev_stdv slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd3 cc2 

cc3 

                  

,aspcos aspsin elev elev_stdv slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd1 cc2 

cc3  

                  

aspcos aspsin elev elev_stdv slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd1 qmd2 

qmd3 cc2 cc3  
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aspcos aspsin elev slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd1 qmd2 qmd3 

cc2 cc3  

                  

aspcos aspsin elev slope slope_stdv d2et tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety qmd1 qmd2 

qmd3 cc2 cc3 cc_variety  

                  

aspcos aspsin elev slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd1 qmd3 cc2 cc3  

                  

aspsin elev slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd3 cc2 cc3  

                  

aspcos aspsin elev slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd1 cc2 cc3  

                  

aspcos aspsin elev slope slope_stdv d2et tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety qmd1 qmd2 

qmd3 qmd_variety cc2 cc3 cc_variety 

                  

aspcos aspsin elev slope slope_stdv d2et tvc4 tvc5 tvc6 tvc_variety qmd1 qmd2 qmd3 

cc2 cc3  

                  

aspcos aspsin elev slope slope_stdv d2et tvc2 tvc3 tvc4 tvc5 tvc6 tvc_variety qmd2 qmd3 

qmd_variety cc2 cc3 cc_variety            
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